Tensorflow学习:基本图像分类

准备工作

导入所用库

# import tensorflow and tf.keras
import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

准备数据集

导入Fashion MNIST数据集

使用Fashion MNIST数据集,该数据集中包含10个类别的70,000个灰度图像。这些图像以低分辨率(28x28像素)展示了单件衣物

image-20210116094550663

Fashion MNIST 旨在临时替代经典 MNIST 数据集,后者常被用作计算机视觉机器学习程序的“Hello, World”。MNIST 数据集包含手写数字(0、1、2 等)的图像,其格式与您将使用的衣物图像的格式相同。

我们使用60,000个照片来训练网络,使用10,000个图像来评估网络学习对图像分类的准确率。您可以直接从TensorFlow访问 Fashion MNIST。运行如下代码,直接从TensorFlow中导入和加载Fashion MNIST数据:

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

加载数据集会放回四个Numpy数组:

  • train_imagestrain_labels是训练集,即模型用于学习的数据。
  • test_imagestest_labels是测试集,用来对模型进行测试。

图像是 28x28 的 NumPy 数组,像素值介于 0 到 255 之间。标签(label)是整数数组,介于 0 到 9 之间。这些标签对应于图像所代表的服装类:

标签
0T恤/上衣
1裤子
2套头衫
3连衣裙
4外套
5凉鞋
6衬衫
7运动鞋
8
9短靴

每个图像都会被映射到一个标签。由于数据集不包括类名称,请将他们存储到下方,供稍后绘制图像时使用:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

浏览数据

在训练模型之前,我们先浏览一下数据集的格式。以下代码显示训练集中有 60,000 个图像,每个图像由 28 x 28 的像素表示:

train_images.shape

同样,训练集中有 60,000 个标签:

len(train_labels)

每个标签都是一个0到9之间的整数:

train_labels

测试集中有 10,000 个图像。同样,每个图像都由 28x28 个像素表示:

test_images.shape

测试集包含 10,000 个图像标签:

len(test_labels)

预处理数据

检查数据集中第一个图像

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()

image-20210116101642967

将这些值缩小至 0 到 1 之间,然后将其馈送到神经网络模型。为此,请将这些值除以 255。请务必以相同的方式对训练集测试集进行预处理:

train_images = train_images / 255.0
test_iamges = test_images / 255.0

为了验证数据的格式是否正确,以及您是否已准备好构建和训练网络,让我们显示训练集中的前 25 个图像,并在每个图像下方显示类名称。

# 验证数据的格式是否正确
plt.figure(figsize=(10, 10))

for i in range(25):
  plt.subplot(5, 5, i+1)
  plt.xticks([])
  plt.yticks([])
  plt.grid(False)
  plt.imshow(train_images[i], cmap=plt.cm.binary)
  plt.xlabel(class_names[train_labels[i]])
plt.show()

image-20210116102452988

构建模型

构建神经网络需要先配置模型的层,然后再编译模型

设置层

神经网络的基本组成部分是。层会从向其馈送的数据中提取表示形式。希望这些表示形式有助于解决手头上的问题。

大多数深度学习都包括将简单的层链接在一起。大多数层(如 tf.keras.layers.Dense)都具有在训练期间才会学习的参数。

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10)
])

该网络的第一层 tf.keras.layers.Flatten 将图像格式从二维数组(28 x 28 像素)转换成一维数组(28 x 28 = 784 像素)。将该层视为图像中未堆叠的像素行并将其排列起来。该层没有要学习的参数,它只会重新格式化数据。

展平像素后,网络会包括两个 tf.keras.layers.Dense 层的序列。它们是密集连接或全连接神经层。第一个 Dense 层有 128 个节点(或神经元)。第二个(也是最后一个)层会返回一个长度为 10 的 logits 数组。每个节点都包含一个得分,用来表示当前图像属于 10 个类中的哪一类。

编译模型

在准备对模型进行训练之间,还需要对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数——用于测量模型在训练期间的准确率。想最小化此函数,以便将模型“引导”到正确的方向上。
  • 优化器——决定模型如何根据其所看到的数据和自身的损失函数进行更新
  • 指标——用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer='adam',
              loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

训练模型

训练神经网络模型需要执行以下步骤:

  1. 将训练数据馈送给模型。
  2. 模型学习将图像和标签关联起来
  3. 要求模型对测试集进行预测
  4. 验证预测是否与test_labels数组中这个的标签相匹配。

向模型馈送数据

要开始训练,请调用model.fit方法,这样命名是因为该方法会将模型与训练数据进行“拟合”:

model.fit(train_images, train_labels, epochs=10)

image-20210116111444753

在模型训练期间,会显示损失和准确率指标。此模型在训练数据上的准确率达到了 0.85(或 85%)左右。

评估准确率

接下来,比较模型在测试数据集上的表现:

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print('\nTest accuracy:', test_acc)

image-20210116111829663

结果表明,模型在测试数据集绗的准确率略低于巡礼那书九九。训练准确率和测试准确率之间的差距代表过拟合,过拟合是指机器学习模型在新的、以前从未及哪国的输入上的表现不如在训练数据上的表现。过拟合的模型会“记住”训练数据集中的噪声和细节,从而对模型在新数据上的表现产生负面影响。

进行预测

在模型经过训练之后,可以使用它对一些图像进行预测。模型具有线性输出,即logits。可以附加一个softmax层,将logits转换成更容易理解的概率

probability_model = tf.keras.Sequential([model,
                     tf.keras.layers.Softmax()])
predictions = probability_model.predict(test_images)

在上例中,模型预测了测试集中每个图像的标签。查看第一个预测结果。

predictions[0]

image-20210116113020450

预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装的“置信度”。可以看到哪个标签的置信度值最大:

np.argmax(predictions[0])

因此,该模型非常确信这个图像是短靴,或 class_names[9]。通过检查测试标签发现这个分类是正确的:

test_labels[0]

您可以将其绘制成图表,看看模型对于全部 10 个类的预测。

def plot_image(i, predictions_array, true_label, img):
  predictions_array, true_label, img = predictions_array, true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])

  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label=np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'

  plt.xlabel("{}{:2.0f}%({})".format(class_names[predicted_label],
                100*np.max(predictions_array),
                class_names[true_label]),
                color=color)

def plot_value_array(i, predictions_array, true_label):
  predictions_array, true_label = predictions_array, true_label[i]
  plt.grid(False)
  plt.xticks(range(10))
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color='#777777')
  plt.ylim([0,1])
  predicted_label = np.argmax(predictions_array)

  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')

验证预测结果

在模型经过训练后,您可以使用它对一些图像进行预测。

我们来看看第 0 个图像、预测结果和预测数组。正确的预测标签为蓝色,错误的预测标签为红色。数字表示预测标签的百分比(总计为 100)。

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

image-20210116155210460

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()

image-20210116155526784

让我们用模型的预测绘制几张图像。请注意,即使置信度很高,模型也可能出错。

num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()

image-20210116155942157

使用训练好的模型

最后,使用训练好的模型对单个图像进行预测

img = test_images[1]

print(img.shape)

tf.keras 模型经过了优化,可同时对一个或一组样本进行预测。因此,即便您只使用一个图像,您也需要将其添加到列表中:

# Add the image to a batch where it's the only member.
img = (np.expand_dims(img, 0))

print(img.shape)

现在预测这个图像的正确标签:

predictions_single = probability_model.predict(img)

print(predictions_single)

image-20210116162019791

plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)

image-20210116162645207

keras.Model.predict会返回一组列表,每个列表对应一批数据中的每个图像。在批次中获取对我们(唯一)图像的预测:

image-20210116162607657

该模型会按照预期预测标签。

完整代码

# 准备工作

# 导入tensorflow和keras
import tensorflow as tf
from tensorflow import keras

# 导入其他库
import numpy as np
import matplotlib.pyplot as plt

# 导入数据集
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# 建立类,对数据集标签进行存储
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

# 浏览数据
train_images.shape
len(train_labels)
train_labels
test_images.shape
len(test_labels)

# 预处理数据

# 检查第一个图像
plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()

# 数据归一化处理
train_images = train_images / 255.0
test_images = test_images / 255.0

# 检查训练集中前25个图像
plt.figure(figsize=(10, 10))

for i in range(25):
    plt.subplot(5, 5, i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_imagesp[i], cmap = plt.cm.binary)
    plt.xlable(class_names[train_labels[i]])
plt.show()

# 构建模型
# 设置层
model = keras.Sequential([
    keras.layers.Flatten(input_shape[28, 28]),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10)
])

# 编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.sparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy']
)

# 向模型馈送数据
model.fit(train_images, train_labels, epochs=10)

# 评估准确率
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print('\nTest accuracy:', test_acc)

# 进行预测
probaility_model = tf.keras.Sequential([model,
                    tf.keras.layers.Softmax()])
predictions = probaility_model.predict(test_images)

predictions[0]

np.argmax(predictions[0])

test_labels[0]

# 绘制预测图表
def plot_image(i, predictions_array, true_label, img):
    predictions_array, true_label, img = predictions_array, true_label[i], img[i]
    plt.grid(False)
    plt.xticks([])
    plt.yticks([])

    plt.imshow(img ,cmap=plt.cm.binary)

    predicted_label = np.argmax(predictions_array)
    if predicted_label == true_label:
        color = 'blue'
    else:
        color = 'red'
    
    plt.xlable("{}{:2.0f}%({})".format(class_names[predicted_label],
                100*np.max(predictions_array),
                class_names[true_label]),
                color=color)

def plot_value_array(i, predictions_array, true_label):
    predictions_array, true_label = predictions_array, true_label[i]
    plt.grid(False)
    plt.xticks(range(10))
    plt.yticks([])
    thisplot = plt.bar(range(10), predictions_array, color='#777777')
    plt.ylim([0,1])
    predicted_label = np.argmax(predictions_array)

    thisplot[predicted_label].set_color('red')
    thisplot[true_label].set_color('blue')

# 验证预测结果
i = 0
plt.figure(figsize(6, 3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()

# 批量输出预测结果
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()

# 使用训练好的模型
img = test_images[1]

print(img.shape)

img = (np.expand_dims(img, 0))

print(img.shape)

predictions_single = probability_model.predict(img)

print(predictions_single)

plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadowCui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值