Echarts 报警差折线图输入算法

本文详细介绍了如何使用Echarts库在Vue.js应用中创建报警差折线图。通过JavaScript实现数据处理和图表配置,探讨了算法在折线图动态展示报警差值的关键步骤,为开发者提供了实用的图表绘制指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


```typescript
 dataBJCfunc(gaps, dataZC, dataBJ) {
      const dataBJC = []  // 报警差值
      const dataBJ2 = []  // 处理后的报警
      for (let i = 0; i < dataZC.length; i++) {
        dataBJ2.push([
          new Date(new Date(dataBJ[i][0]).getTime()).Format(
            'yyyy-MM-dd hh:mm:ss'
          ),
          dataBJ[i][1]
        ])
        if (dataZC[i][1] >= dataBJ[i][1]) {   // 正常值>=报警值
          dataBJC.push([dataZC[i][0], dataZC[i][1] - dataBJ[i][1]])
          if (i < dataZC.length - 1 && dataZC[i + 1][1] < dataBJ[i + 1][1]) {
            const diff =
              (gaps[i] * (dataZC[i][1] - dataBJ[i][1])) //
              (dataZC[i][1] -
                dataBJ[i][1] +
                dataBJ[i + 1][1] -
                dataZC[i + 1][1])
            const dateStr = new Date(
              new Date(dataZC[i][0]).getTime() + diff * 1000
            ).Format('yyyy-MM-
<think>好的,我需要帮助用户寻找关于基于物联网的河道水质监测系统的监控图表设计与实现方法。首先,我需要整理用户提供的引用内容,看看是否有相关的信息。引用[1]提到GIS地图展示,引用[3]提到数据传输到平台进行监测和统计分析。这些可能涉及到监控图表的设计。 接下来,我应该考虑物联网系统的常见监控图表类型,比如GIS地图、实时数据曲线、仪表盘等。用户需要的是设计或实现方法,所以需要分步骤说明,可能包括数据采集、传输、可视化技术选型、图表设计要素等。 同时,引用中提到了NB-IoT或4G通讯,太阳能供电,这些可能在系统架构中需要涉及。另外,报警功能也需要在图表中体现,比如阈值标记或颜色变化。 我需要确保回答结构清晰,分点说明设计要点和实现步骤,并结合引用中的GIS地图、实时告警、平台功能等信息。还要注意使用正确的中文和LaTeX格式,如果有数学表达式的话,但这个问题可能更多涉及技术实现,数学内容可能不多。 最后,生成相关问题,比如数据采集技术、通讯方式对比、报警机制优化等。确保引用标记正确,比如GIS地图在引用[1],系统设计在引用[2],监测站功能在引用[3]。</think>基于物联网的河道水质监测系统监控图表设计与实现需结合实时数据可视化、GIS定位和多维度分析,以下是关键技术要点及步骤: ### 一、监控图表设计要点 1. **GIS地理信息集成** - 采用分层式地图展示监测站点分布,通过图标颜色区分水质等级(如I-IV类水) - 叠加热力图显示污染扩散趋势,支持时间轴回放功能[^1] 2. **多参数动态展示** - 组合式图表包含: $$水质参数= \begin{cases} \text{折线图} & \text{pH/COD实时变化} \\ \text{仪表盘} & \text{溶解氧饱和度} \\ \text{柱状图} & \text{多站点数据对比} \end{cases}$$ - 使用阈值警戒线标注(如氨氮>2mg/L触发红色标记) 3. **时序数据分析** - 滑动窗口算法处理实时数据流: $$ \hat{x}_t = \frac{1}{N}\sum_{i=t-N+1}^{t}x_i $$ 其中$N$为时间窗口长度,$x_i$为原始数据 ### 二、技术实现路径 1. **数据采集层** - 采用多传感器融合技术,通过Modbus协议传输数据 - 部署边缘计算节点进行异常值过滤[^3] 2. **数据传输层** - 使用MQTT协议实现低延时传输,配置QoS等级保障关键数据 - NB-IoT与4G双模冗余传输设计 3. **可视化实现** ```python # 示例:使用Echarts生成水质曲线 from pyecharts.charts import Line def create_quality_chart(data): line = Line() line.add_xaxis(data['time']) line.add_yaxis("COD浓度", data['cod'], markline_opts={"data": [{"yAxis": 30}]}) return line.render() ``` 4. **告警联动机制** - 实现三级告警策略: 1. 阈值触发($x > x_{\text{max}}$) 2. 变化率检测($\frac{dx}{dt} > k$) 3. 多参数关联预警 ### 三、典型系统架构 ``` [传感器层] --RS485--> [边缘网关] --4G/NB-IoT--> [云平台] | [太阳能供电单元]-----------+ ``` 包含数据清洗、时序数据库(InfluxDB)、可视化引擎三模块[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值