堆排序

1、堆排序:是直接选择排序的升级版,是不稳定的排序
2、时间复杂度:T(n)= O(nlogn),
3、堆是具有以下性质的完全二叉树:

  • 每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;
  • 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
    我们用简单的公式来描述一下堆的定义就是:
    大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
    小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]

4、因为要提前构建堆(树),所以建议数据较大的时候使用

public class HeapSort {
    public static void main(String[] args) {
        int[] arr = {9, 8, 7, 6, 5, 4, 3, 2, 1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }

    public static void sort(int[] arr) {
        //1.构建大顶堆
        for (int i = arr.length / 2 - 1; i >= 0; i--) {
            //从第一个非叶子结点从下至上,从右至左调整结构
            adjustHeap(arr, i, arr.length);
        }
        //2.调整堆结构+交换堆顶元素与末尾元素
        for (int j = arr.length - 1; j > 0; j--) {
            //将堆顶元素与末尾元素进行交换
            swap(arr, 0, j);
            //重新对堆进行调整
            adjustHeap(arr, 0, j);
        }
    }

    /**
     * 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
     */
    public static void adjustHeap(int[] arr, int i, int length) {
        //先取出当前元素i
        int temp = arr[i];
        //从i结点的左子结点开始,也就是2i+1处开始
//        if(k+1//如果左子结点小于右子结点,k指向右子结点
        for (int k = i * 2 + 1; k < length; k = k*2+1) {
            if(k+1<length && arr[k]<arr[k+1]){
                k++;
            }
            if (arr[k] > temp) {
                //如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
                arr[i] = arr[k];
                i = k;
            } else {
                break;
            }
        }
        //将temp值放到最终的位置
        arr[i] = temp;
    }

    /**
     * 交换元素
     */
    public static void swap(int[] arr, int a, int b) {
        int temp = arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }
}
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值