机器学习之k-means聚类

机器学习之k-means聚类

聚类算法属于无监督学习,与分类算法这种有监督学习不同的是,聚类算法事先并不需要知道数据的类别标签,而只是根据数据特征去学习,找到相似数据的特征,然后把已知的数据集划分成几个不同的类别。

比如说我们有一堆树叶,对于分类问题来说,我们已经知道了过去的每一片树叶的类别。比如这个是枫树叶,那个是橡树叶,经过学习之后拿来一片新的叶子,你看了一眼,然后说这是枫树叶。而对于聚类问题,这里一堆树叶的具体类别你是不知道的,所以你只能学习,这个叶子是圆的,那个是五角星形的;这个边缘光滑,那个边缘有锯齿…… 这样你根据自己的判定,把一箱子树叶分成了几个小堆,但是这一堆到底是什么树叶你还是不知道的。

首先介绍一个例子。

假设我们在罪恶都市里,有三个区域,每个区域有一个帮派进行管理。每个帮派都有一个大佬,每个大佬都管理着一群小弟,小弟们也有不同的等级。大佬给高级小弟安排任务,高级小弟再给低级小弟安排任务,而低级小弟们负责具体实施。有些小弟可能就在自己的区域活动,管理本区域内的店铺、保障本区域的治安;有些小弟可能会负责跟其他两个帮派联络、洽谈地盘、交易等业务。

这个时候来了个国民警卫队要整治这个区域,所以他们希望能够把帮派的关系理清楚,但是有那么多人该从哪里入手呢?最好的方案当然是先把大佬抓到,然后看一下他都联系谁就一目了然了。但是国民警卫队也不知道谁是大佬,那要怎么办?

假设国民警卫队已经知道这里面有三个帮派,那么国民警卫队派人在每个区设一个点,先随便抓一个人,最开始可能抓到的只是一个边缘小弟,甚至有一些可能抓到的两个是同一个帮派。但是没关系,先假设他是大佬,看跟他联系密切的都是哪些人,然后再从这些人里找一个跟其他人联系更密切的人。就这样反复寻找,最后终于找到每个帮派的大佬,而大佬联系的那些人自然就是这个帮派的小弟了 。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WSmmpRiF-1660360981470)(C:\Users\HP\AppData\Roaming\Typora\typora-user-images\1660359947534.png)]

一、算法原理

设我们的数据总共有 m 条,我们计划分为 3 个类别。如果我们的数据有两个特征维度,那我们的数据就分布在一个二维平面上,如果有十个维度,就分布在一个十维的空间中。

第一轮,先随机在这个空间中选取三个点,我们称之为中心点,当然选取的三个点不一定是实际的数据点。接着计算所有的点到这三个点的距离,这里的距离计算仍然使用的是欧氏距离,每个点(所有的点)都选择距离最近的那个作为自己的中心点。这个时候我们就已经把数据划分成了三个组。使用每个组的数据计算出这些数据的一个均值,使用这个均值作为下一轮迭代的中心点。

后面若干轮重复上面的过程进行迭代,当达到一些条件,比如说规定的轮次或者中心点的变动很小等,就可以停止运行了。

根据以上描述,我们大致可以猜测到实现kmeans算法的主要四点:

(1)簇个数 k 的选择
(2)各个样本点到“簇中心”的距离
(3)根据新划分的簇,更新“簇中心”
(4)重复上述2、3过程,直至"簇中心"没有移动

1、确定k值

在算法实现的过程中,我们面临的问题就是如何确定 K 值。因为在日常的情况下,我们也不知道这些数据到底会有多少个类别,或者分为多少个类别会比较好,所以在选择 K 值的时候比较困难,只能根据经验先拍一个数值。

有一个比较常用的方法,叫作手肘法。就是去循环尝试 K 值,计算在不同的 K 值情况下,所有数据的损失,即用每一个数据点到中心点的距离之和计算平均距离。可以想到,当 K=1 的时候,这个距离和肯定是最大的;当 K=m 的时候,每个点也是自己的中心点,这个时候全局的距离和是 0,平均距离也是 0,当然我们不可能设置成 K=m。

而在逐渐加大 K 的过程中,会有一个点,使这个平均距离发生急剧的变化,如果把这个距离与 K 的关系画出来,就可以看到一个拐点,也就是我们说的手肘。

如下图,我在这里虚拟了一份数据,可以看到在 K=4 的时候就是我们的肘点,在这个肘点前平均距离下降迅速,在 4 之后平均距离下降变得缓慢。但是这个方法只能适用 K 值不那么大的情况,如果 K 值较大,如几千几万,那迭代的次数就太多了,当然你也可以选择一个比较大的学习率来加以改进。不过总体而言,需要消耗一定的时间。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iapJeq1U-1660360981474)(C:\Users\HP\AppData\Roaming\Typora\typora-user-images\1660360093176.png)]

要确定 K 值确实是一项比较费时费力的事情,但是也是必须要做的事情 。

2、距离计算

将对象点分到距离聚类中心最近的那个簇中需要最近邻的度量策略,在欧式空间中采用的是欧式距离,在处理文档中采用的是余弦相似度函数,有时候也采用曼哈顿距离作为度量,不同的情况实用的度量公式是不同的。

2.1 欧式距离

img

2.2 曼哈顿距离

img

2.3 余弦相似度

img

img

二、算法优缺点

1、优点

  • 简洁明了,计算复杂度低。 K-means 的原理非常容易理解,整个计算过程与数学推理也不是很困难。
  • 收敛速度较快。 通常经过几个轮次的迭代之后就可以获得还不错的效。

2、缺点

  • 结果不稳定。 由于初始值随机设定,以及数据的分布情况,每次学习的结果往往会有一些差异。
  • 无法解决样本不均衡的问题。 对于类别数据量差距较大的情况无法进行判断。
  • 容易收敛到局部最优解。 在局部最优解的时候,迭代无法引起中心点的变化,迭代将结束。
  • 受噪声影响较大。 如果存在一些噪声数据,会影响均值的计算,进而引起聚类的效果偏差。

三、代码举例

这次我们使用的仍然是鸢尾花数据集,当然,由于是聚类,我们不需要使用标签数据,只需要使用特征数据就可以了。

from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

'''
画出聚类后的图像
labels=聚类后的label,从0开始的数字
cents:质心坐标
n_cluster:聚类后簇的数量
color:每一簇的颜色
'''
def draw_result(train_x,labels,cents,title):
	n=np.unique(labels).shape[0]  #labels的不重复的列数
	color=['red','orange','yellow']
	plt.figure()
	plt.title(title)
	for i in range(n):
    	current_data= train_x[labels==i]
    	plt.scatter(current_data[:,0],current_data[:,1],c=color[i])
    	plt.scatter(cents[i,0],cents[i,1],c='blue',marker='*',s=100)
	return plt


iris = datasets.load_iris()
iris_x=iris.data
clf=KMeans(n_clusters=3,max_iter=10,n_init=10,init='k-means++',algorithm='full',tol=1e-4,random_state=1)
clf.fit(iris_x)
print('SSE=',clf.inertia_)
draw_result(iris_x,clf.labels_,clf.cluster_centers_,'kmeans').show()

在这里插入图片描述

三、扩展内容

1、K-means++

第一种是 K-means++,这种方法主要在初始选取中心点的时候进行了优化。原本第一轮是随机进行选取的,但是由于算法可能会陷入局部最优解,随机地选取可能引起结果的不稳定。 K-means++ 则是从已有的数据中随机地进行多次选取 K 个中心点,每次都计算这一次选中的中心点的距离,然后取一组最大的作为初始化中心点。

2、mini batch K-means

第二种 mini batch 方法,主要是基于在数据量和数据维度都特别大的情况下,针对运算变得异常缓慢的问题进行的改进。我们前面提到, K-means 的收敛速度相对较快,所以前面几步的变动比较大,到了后面的步骤其实只有非常小的变动。 mini batch 的方案就是在迭代时,不再使用所有的点,而是每个集合中选取一部分点进行计算,从而降低计算的复杂度。

四、总结

面提到, K-means 的收敛速度相对较快,所以前面几步的变动比较大,到了后面的步骤其实只有非常小的变动。 mini batch 的方案就是在迭代时,不再使用所有的点,而是每个集合中选取一部分点进行计算,从而降低计算的复杂度。

四、总结

这节课我们进入了新的算法类型——聚类算法的学习。在开头我又简单介绍了一下什么是聚类算法,聚类与分类有什么样的区别,接着就讲到了本节课的主角——K-means 算法,它是一种非常简洁的基于划分的聚类算法。与前面一样,在介绍完算法的思想之后我加入了一段代码来实现快速上手,并且加入了一个画图的方法来展示聚类的效果。在看完了这一课时的内容之后,你是否能在自己的工作中使用 K-means 来解决问题了呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值