K-means分类器 python

本文探讨了使用K-means算法对鸢尾花数据集进行分类的过程,包括算法原理、K值选择和改进。通过Python的sklearn库实现,对比不同维度下的分类效果,计算inertia、轮廓系数和调整兰德系数来评估聚类质量。实验结果显示,这些指标有助于确定最佳的K值。
摘要由CSDN通过智能技术生成

K-means分类器讨论

1.1 题目的主要研究内容

(1)组的主要任务描述

  1. k均值算法流程,原理
  2. k的选择方法
  3. kmeans算法编写
  4. 鸢尾花实现及结果分析
  5. 手动推演
  6. k均值的改进

(2)自己工作的主要描述

工作内容主要包括设计算法实现对鸢尾花数据集的分类,并对分类结果做分析,找出最适合的评价标准。

1.2 题目研究的工作基础或实验条件

(1)硬件环境

笔记本电脑

(2)软件环境

pycharm,python

1.3 设计思想

加载sklearn中的iris数据集使用不同维度的数据,调用sklearn中的KMeans()函数实现鸢尾花分类,然后设置不同的k值,做多次分类,将结果用matplotlib画出来比对结果,再计算inertia指标、轮廓系数、调整兰德系数。

1.4 主要程序代码(要求必须有注释)

import matplotlib.pyplot as plt

import numpy as np

from sklearn.cluster import KMeans

from sklearn import datasets

from sklearn import metrics

from sklearn.metrics import silhouette_score, silhouette_samples

# inertia指标

inertia_scores = []

# 轮廓系数silhouette_score

sil_scores = []

# ari兰德系数

ari_scores = []

# 花萼长度、花萼宽度、花瓣长

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李逍遥敲代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值