1045. 快速排序(25)
题目
著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。 给定划分后的N个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?
例如给定N = 5, 排列是1、3、2、4、5。则:
1的左边没有元素,右边的元素都比它大,所以它可能是主元;
尽管3的左边元素都比它小,但是它右边的2它小,所以它不能是主元;
尽管2的右边元素都比它大,但其左边的3比它大,所以它不能是主元;
类似原因,4和5都可能是主元。
因此,有3个元素可能是主元。
输入格式:
输入在第1行中给出一个正整数N(<= 105); 第2行是空格分隔的N个不同的正整数,每个数不超过109。
输出格式:
在第1行中输出有可能是主元的元素个数;在第2行中按递增顺序输出这些元素,其间以1个空格分隔,行末不得有多余空格。
输入样例:
5
1 3 2 4 5
输出样例:
3
1 4 5
思路
用两次遍历,从下标小到大将不满足比左边的数大的数抹掉(填为最小的数),否则就保持和原数组一样,同理从大的下标到小的,将不满足比右边小的数也填为最大数。最后比较三个序列,相同位置的数一致就是主元。
代码
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
int i,n,m,count=0;
scanf("%d",&n);
int a[100000],b[100000],c[100000];
for(i=0;i<n;i++)
scanf("%d",&a[i]);
for(i=0,m=0;i<n;i++)
if(a[i]>=a[m])
{
b[i]=a[i];
m=i;
}
else
b[i]=a[m];
for(i=n-1,m=i;i>=0;i--)
if(a[i]<=a[m])
{
c[i]=a[i];
m=i;
}
else
c[i]=a[m];
for(i=0;i<n;i++)
if(a[i]==b[i]&&a[i]==c[i])
count ++;
else
a[i]=0;
printf("%d\n",count);
for(i=0;i<n;i++)
{
if(a[i])
{
printf("%d ",b[i]);
count--;
}
if(count==1)break;
}
for(i++;i<n;i++)
if(a[i])printf("%d",a[i]);
printf("\n");
return 0;
}