题目描述
已知一个长度为n的整数数列a1,a2,…,an,给定查询参数l、r,问在al,al+1,…,ar区间内,有多少子序列满足异或和等于k。也就是说,对于所有的x,y(l≤x≤y≤r),满足ax⊕ax+1⊕⋯⊕ay=k的x,y有多少组。
输入
输入第一行为3个整数n,m,k。第二行为空格分开的n个整数,即a1,a2,…,an。接下来m行,每行两个整数lj,rj,代表一次查询。
输出
输出共m行,对应每个查询的计算结果。
样例输入
4 5 1 1 2 3 1 1 4 1 3 2 3 2 4 4 4
样例输出
4 2 1 2 1
提示
对于30%的数据,1≤n,m≤1000。
对于100%的数据,1≤n,m≤105,0≤k,ai≤105,1≤lj≤rj≤n。
思路:莫队算法的查询问题
#include<cstdio>
#include<cstring>
#include<math.h>
#include<algorithm>
#include<queue>
#include<vector>
#include<iostream>
#include<map>
#include<queue>
#define mes(a,b) memset(a,b,sizeof(a))
#define rep(i,m,n) for(i=m;i<=n;i++)
typedef long long ll;
using namespace std;
int max3(int a,int b,int c){return max(max(a,b),c);}
ll min3(ll a,ll b,ll c){return min(min(a,b),c);}
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=1e6+5;
const int mod=1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll inv(ll b){if(b==1)return 1; return (mod-mod/b)*inv(mod%b)%mod;}
ll fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n%mod;n=n*n%mod;}return r;}
ll Fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n;n=n*n;}return r;}
struct node
{
int l,r;
int id;
} pp[1000005];
int n,m,k;
long long ans[1000005];
long long flag[1000005];
long long a[1000005];
long long pos[1000005];
bool cmp(node aa,node bb)
{
if(pos[aa.l]==pos[bb.l])
return aa.r<bb.r;
return pos[aa.l]<pos[bb.l];
}
int Ans=0;
void add(int x)
{
Ans+=flag[a[x]^k];
flag[a[x]]++;
}
void del(int x)
{
flag[a[x]]--;
Ans-=flag[a[x]^k];
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
int ss=sqrt(n);//分块
for(int i=1; i<=n; i++)
{
scanf("%lld",&a[i]);
a[i]=a[i]^a[i-1];//每个a[i]里面存的都是前几项的异或结果
pos[i]=i/ss;//将每一部分分块
}
for(int i=1; i<=m; i++)
{
scanf("%lld%lld",&pp[i].l,&pp[i].r);
pp[i].id=i;
}
sort(pp+1,pp+1+m,cmp);//按照块来排序,如果块相同的话就按照查找区间的右端点从小大到大排序
flag[0]=1;//初始化代表已经查询到
int l=1;
int r=0;
for(int i=1; i<=m; i++)
{
while(l<pp[i].l)
{
del(l-1);
l++;
}
while(l>pp[i].l)
{
l--;
add(l-1);
}
while(r<pp[i].r)
{
r++;
add(r);
}
while(r>pp[i].r)
{
del(r);
r--;
}
ans[pp[i].id]=Ans;
}
for(int i=1; i<=m; i++)
printf("%lld\n",ans[i]);
return 0;
}