异或序列

题目描述

已知一个长度为n的整数数列a1,a2,…,an,给定查询参数l、r,问在al,al+1,…,ar区间内,有多少子序列满足异或和等于k。也就是说,对于所有的x,y(l≤x≤y≤r),满足ax⊕ax+1⊕⋯⊕ay=k的x,y有多少组。

 

输入

输入第一行为3个整数n,m,k。第二行为空格分开的n个整数,即a1,a2,…,an。接下来m行,每行两个整数lj,rj,代表一次查询。

 

输出

输出共m行,对应每个查询的计算结果。

 

样例输入

4 5 1
1 2 3 1
1 4
1 3
2 3
2 4
4 4

 

样例输出

4
2
1
2
1

 

提示

对于30%的数据,1≤n,m≤1000。
对于100%的数据,1≤n,m≤105,0≤k,ai≤105,1≤lj≤rj≤n。

思路:莫队算法的查询问题

#include<cstdio>
#include<cstring>
#include<math.h>
#include<algorithm>
#include<queue>
#include<vector>
#include<iostream>
#include<map>
#include<queue>
#define mes(a,b) memset(a,b,sizeof(a))
#define rep(i,m,n) for(i=m;i<=n;i++)
typedef long long ll;
using namespace std;
int max3(int a,int b,int c){return max(max(a,b),c);}
ll min3(ll a,ll b,ll c){return min(min(a,b),c);}
const double PI=acos(-1);
const int inf=0x3f3f3f3f;
const double esp=1e-6;
const int maxn=1e6+5;
const int mod=1e9+7;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll inv(ll b){if(b==1)return 1; return (mod-mod/b)*inv(mod%b)%mod;}
ll fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n%mod;n=n*n%mod;}return r;}
ll Fpow(ll n,ll k){ll r=1;for(;k;k>>=1){if(k&1)r=r*n;n=n*n;}return r;}
struct node
{
    int l,r;
    int id;
} pp[1000005];
int n,m,k;
long long ans[1000005];
long long flag[1000005];
long long a[1000005];
long long pos[1000005];
bool cmp(node aa,node bb)
{
    if(pos[aa.l]==pos[bb.l])
        return aa.r<bb.r;
    return pos[aa.l]<pos[bb.l];
}
int Ans=0;
void add(int x)
{
    Ans+=flag[a[x]^k];
    flag[a[x]]++;
}

void del(int x)
{
    flag[a[x]]--;
    Ans-=flag[a[x]^k];
}
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    int ss=sqrt(n);//分块
    for(int i=1; i<=n; i++)
    {
        scanf("%lld",&a[i]);
        a[i]=a[i]^a[i-1];//每个a[i]里面存的都是前几项的异或结果
        pos[i]=i/ss;//将每一部分分块

    }
    for(int i=1; i<=m; i++)
    {
        scanf("%lld%lld",&pp[i].l,&pp[i].r);
        pp[i].id=i;
    }
    sort(pp+1,pp+1+m,cmp);//按照块来排序,如果块相同的话就按照查找区间的右端点从小大到大排序
    flag[0]=1;//初始化代表已经查询到
    int l=1;
    int r=0;
    for(int i=1; i<=m; i++)
    {
        while(l<pp[i].l)
        {
            del(l-1);
            l++;
        }
        while(l>pp[i].l)
        {
            l--;
            add(l-1);
        }
        while(r<pp[i].r)
        {
            r++;
            add(r);
        }
        while(r>pp[i].r)
        {
            del(r);
            r--;
        }
        ans[pp[i].id]=Ans;
    }
    for(int i=1; i<=m; i++)
        printf("%lld\n",ans[i]);


    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值