小乐乐下象棋

链接:https://ac.nowcoder.com/acm/contest/301/F

题目描述

小乐乐一天天就知道玩,这一天又想玩象棋。
我们都知道马走日。
现在给定一个棋盘,大小是n*m,把棋盘放在第一象限,棋盘的左下角是(0,0),右上角是(n - 1, m - 1);
小乐乐想知道,一个马从左下角(0, 0)开始,走了k步之后,刚好走到右上角(n - 1, m - 1)的方案数。

输入描述:

输入:多组样例输入,每组一行,三个整数n, m, k(1 <= n, m, k <= 200),如题目所示。

输出描述:

输出:输出答案 mod 1000000007

示例1

输入

复制

4 4 2

输出

复制

2

思路:记忆化搜索,举个例子,如果计算斐波那契数列的时候利用深搜,每一次都搜索的话就会浪费很多时间,如果利用一个数组直接将得到的答案存到数组中,那样在深搜的时候减少一些时间。这个题就是利用了记忆话的搜索,在没走到一个方格的时候就会将这个方格的方案数记录下来。

#include<stdio.h>
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f
#define ll long long
#define Mod 1000000007
int n,m,k;
ll ans;
int dir[8][2]={1,2,-1,2,1,-2,-1,-2,2,1,-2,1,2,-1,-2,-1};
ll dp[205][205][205];
ll dfs(int x,int y,int t)
{
    if(dp[x][y][t]!=-1)
        return dp[x][y][t];
    ll ans=0;int tx,ty;
    for(int i=0;i<8;i++)
    {
        tx=x+dir[i][0];
        ty=y+dir[i][1];
        if(tx>=0&&tx<n&&ty>=0&&ty<m&&t<k)
        {
            ans=(ans+dfs(tx,ty,t+1))%Mod;
        }
    }
    return dp[x][y][t]=ans;
}
int main()
{
    while(scanf("%d %d %d",&n,&m,&k)!=EOF)
    {
        memset(dp,-1,sizeof(dp));
        dp[n-1][m-1][k]=1;
        
        printf("%lld\n",dfs(0,0,0));
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值