题目描述
小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。
输入输出格式
输入格式:第一行两个整数n,m,表示点的个数和边的个数。
接下来m行每行两个数字u,v,表示一条u到v的边。
输出格式:一行一个数字,表示到公司的最少秒数。
输入输出样例
说明
【样例解释】
1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。
【数据范围】
50%的数据满足最优解路径长度<=1000;
100%的数据满足n<=50,m<=10000,最优解路径长度<=maxlongint。
#include<bits/stdc++.h>
using namespace std;
int dis[60][60];
int fa[60][60][100];
int n , m ;
int main()
{
cin >> n >> m;
int inf = 1e8;
for(int i = 1; i <= n ; i ++)
{
for(int j = 1; j <= n ; j ++)
dis[i][j] = inf;
}
for(int i = 1; i <= m ; i ++)
{
int x , y;
scanf("%d %d" , &x , &y);
fa[x][y][0] = 1;
dis[x][y] = 1;
}
for(int i = 1 ; i <= 64 ; i ++ )
for(int j = 1 ; j <= n ; j ++)
for(int k = 1; k <= n ; k ++)
for(int u = 1 ; u <= n ; u ++)
if(fa[j][k][i-1] && fa[k][u][i-1])
{
fa[j][u][i] = 1;
dis[j][u] = 1;
}
for(int i = 1; i <= n ; i ++)
{
for(int j = 1; j <= n ; j ++)
{
for(int k = 1; k <= n ; k ++)
{
dis[j][k] = min (dis[j][k] , dis[j][i] + dis[i][k]);
}
}
}
cout << dis[1][n];
return 0;
}