迷宫问题(DFS,BFS)走法计算,最小步数

问题 1672: 迷宫问题

时间限制: 1Sec 内存限制: 32MB

题目描述
小明置身于一个迷宫,请你帮小明找出从起点到终点有多少种走法。
小明只能向上下左右四个方向移动。
输入
输入包含多组测试数据。输入的第一行是一个整数T,表示有T组测试数据。
每组输入的第一行是两个整数N和M(1<=N,M<=100)。
接下来N行,每行输入M个字符,每个字符表示迷宫中的一个小方格。
字符的含义如下:
‘s’:起点
‘e’:终点
‘-.:空地,可以通过
‘#’:障碍,无法通过
输入数据保证有且仅有一个起点和终点。
输出
对于每组输入,输出多少中走法,如果不存在从起点到终点的路,则输出-1。
样例输入:
在这里插入图片描述
样例输出:
1
分析:利用深搜统计即可

#include<cstdio>
#include<string>
#include<iostream>
using namespace std;
int m,n;
int ans=0;//记录次数 
bool vis[1005][1005];
int dir[4][2]{{-1,0},{0,-1},{1,0},{0,1}};
string mp[1005];
bool in(int x,int y){
	return x>=0&&x<m&&y>=0&&y<n;
}
void dfs(int x,int y){
	if(mp[x][y]=='e'){
		ans++;
		return;
	}
	vis[x][y]=true;
	for(int i=0;i<4;i++){
		int tx=x+dir[i][0];
		int ty=y+dir[i][1];
		if(in(tx,ty)&&!vis[tx][ty]&&mp[tx][ty]!='#'){
			dfs(tx,ty);
		}
	}
	vis[x][y]=false;
} 
int main(){
	cin>>m>>n;
	int x,y;
	for(int i=0;i<m;i++){
		cin>>mp[i];
	}
	for(int i=0;i<m;i++){//找到起点 
		for(int j=0;j<n;j++){
			if(mp[i][j]=='s'){
				 x=i;
				 y=j;
			}
		}
	}
	dfs(x,y);
	if(ans>0)
	cout<<ans<<endl;
	else
	printf("-1");
	return 0;
} 

运行结果:
在这里插入图片描述
接来来是问最小步数数多少(这里用到了搜索剪枝)

#include<cstdio>
#include<iostream>
#include<string>
using namespace std;
int n,m;
string maze[110];
bool vis[110][110];
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
int ans=100000;
bool in (int x,int y){
	return 0<=x&&x<n&&0<=y&&y<m;
}
void dfs(int x,int y,int step){
	if(step>=ans){//这里是剪枝,当大于这个步数时,我们就无需再进行这条路找下去了
		return;
	}
	if(maze[x][y]=='T'){
		ans=step;
		return;
	}
	vis[x][y]=true;
	for(int i=0;i<4;i++){
		int tx=x+dir[i][0];
		int ty=y+dir[i][1];
		if(in(tx,ty)&&maze[tx][ty]!='#'&&!(vis[tx][ty])){
			dfs(tx,ty,step+1);
		}  
	}
	vis[x][y]=false;
}
int main(){
	cin>>n>>m;
	for(int i=0;i<n;i++){
		cin>>maze[i];
	}
	int x,y;
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			if(maze[i][j]=='S'){
				x=i,y=j;
			}
		}
	} 
	dfs(x,y,0);
	cout<<ans<<endl;
	return 0;
}

运行结果:
在这里插入图片描述
下面是最小步数用宽搜来实现(起点S,终点T)

#include<iostream>
#include<queue>
#include<string>
#include<algorithm>
using namespace std;
string maze[10005];
bool vis[10005][10005];
int dir[4][2]={{-1,0},{0,-1},{1,0},{0,1}};
int n,m;
//判断是否在地图中函数 
bool in(int x,int y){
	return 0<=x&&x<n&&0<=y&&y<m;
} 
//用结构体记录状态 
struct node{
	int x,y,d;
	node(int xx,int yy,int dd){//使用构造函数 
		x=xx;
		y=yy;
		d=dd;
	}
};
int bfs(int sx,int sy){
	queue<node> q;//定义队列 
	q.push(node(sx,sy,0));//起点入队 
	vis[sx][sy]=true;//标记起点访问过 
	while(!q.empty()){//判断队列是否为空 
		node now=q.front();
		q.pop();
		for(int i=0;i<4;i++){//搜索与当前点相邻的点 
			int tx=now.x+dir[i][0];
			int ty=now.y+dir[i][1];
			if(in(tx,ty)&&maze[tx][ty]!='#'&&!vis[tx][ty]){//判断相邻点是否合法 
				if(maze[tx][ty]=='T'){//当找到终点时直接输出 
					return now.d+1;
				}else{
					vis[tx][ty]=true;//标记相邻点来过 
					q.push(node(tx,ty,now.d+1));//去相邻点搜索 
				}
			}
		}
	}
	return -1;//没有找到放回-1 
}
int main(){
	cin>>n>>m;
	for(int i=0;i<n;i++){
		maze[i].resize(m);
	}//字符串初始化 
	for(int i=0;i<n;i++){//输入地图 
		cin>>maze[i];
	}
	int x,y;
	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			if(maze[i][j]=='S'){//找到起点 
				x=i,y=j;
			}
		}
	}
	cout<<bfs(x,y)<<endl;//宽搜 
	return 0;
}
### 使用DFS算法求解迷宫最少步数 #### DFS算法简介 深度优先搜索(DFS)是一种用于遍历或搜索树或图的算法。该方法会尽可能深入地探索每一个分支,直到无法继续为止,之后再回退并尝试下一个可能的方向。 对于迷宫问题而言,在到达终点后要进行回溯,利用回溯找到其他路径,最终得出一个最短路径[^3]。然而需要注意的是,由于DFS的特点是在遇到第一个解决方案时并不立即停止而是继续查找所有可能性,因此它并非总是能够高效地找出最短路径;只有当所有路径都被穷尽比较后才能确认哪条是最优解。 #### 实现方式 为了使用DFS计算从起点到目标位置所需的最小移动次数,可以采用递归函数配合栈结构来进行模拟: ```cpp #include <iostream> using namespace std; const int MAXN = 10; bool maze[MAXN][MAXN]; int minSteps = INT_MAX, currentStepCount = 0; // 方向数组定义上下左右四个方向 int dx[] = {-1, 1, 0, 0}; int dy[] = {0, 0, -1, 1}; void dfs(int x, int y){ if (x == targetX && y == targetY){ // 到达目的地 if(currentStepCount < minSteps) minSteps = currentStepCount; return ; } for(int i=0;i<4;++i){ int newX=x+dx[i],newY=y+dy[i]; if(newX>=0&&newX<M&&newY>=0&&newY<N&&!maze[newX][newY]){ maze[newX][newY]=true;//标记走过的地方防止重复走 ++currentStepCount; dfs(newX,newY); --currentStepCount; // 回溯操作 maze[newX][newY]=false; // 清除访问标志以便后续路径可用 } } } ``` 此代码片段展示了如何基于给定的地图数据`maze[][]`(其中`true`表示障碍物而`false`为空白区域),以及起始坐标(x,y)调用`dfs()`函数去寻找通往指定的目标坐标的最短距离。注意这里假设了全局变量`targetX`,`targetY`, `M`, 和 `N`已经被正确定义为终点的位置和迷宫尺寸大小。 尽管上述方法确实能解决问题,但在实际应用中通常推荐使用广度优先搜索(BFS)[^2] 来处理此类需求,因为BFS可以在首次抵达终点时即刻返回最优解而不必等待整个空间被完全探索完毕。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值