定义
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
如上图拓扑排序排序序列为{1,2,3,4,5}
拓扑序列可能有多个
用队列实现拓扑排序最简单
代码:
#include<cstdio>
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
vector<int> edge[100000];//邻接链表
int degree[100000];
int n,m;
void top(){
queue<int> node;
//找到入度为零的点
for(int i=1;i<=n;i++){
if(degree[i]==0){
node.push(i);
}
}
while(!node.empty()){
int now = node.front();
printf("%d ",now);//输出序列
node.pop();
for(int i=0;i<edge[now].size();i++){//找相邻节点
int dot = edge[now][i];
degree[dot]--;
if(degree[dot]==0){//入度为零入队
node.push(dot);
}
}
}
}
int main(){
cin>>n>>m;
//建立邻接链表
for(int i=0;i<=m;i++){
int x,y;
cin>>x>>y;
if(x==0&&y==0)break;
degree[y]++;
edge[x].push_back(y);
}
top();
return 0;
}