前言
两种解决方法
MTT & 拆系数FFT
FFT很讨厌了,卡精度,弃
于是学习易卡常的MTT
钻研一下用vector写不会炸裂的
总览
利用中国剩余定理得到一个超大的结果(
>
1
0
23
>10^{23}
>1023)
然后一模,一切都解决了
- step1
在三个模数(两个不够 > 1 0 23 >10^{23} >1023)下分别得到三个多项式 - step2
合并三个多项式
合并
考虑合并多项式
对于每一位,有
x
≡
a
1
(
m
o
d
p
1
)
x
≡
a
2
(
m
o
d
p
2
)
x
≡
a
3
(
m
o
d
p
3
)
x\equiv a_1 \pmod {p_1}\\ x\equiv a_2 \pmod {p_2}\\ x\equiv a_3 \pmod {p_3}
x≡a1(modp1)x≡a2(modp2)x≡a3(modp3)
合并三项发现炸long long
考虑合并前两项
x
≡
a
2
p
1
p
1
′
+
a
1
p
2
p
2
′
(
m
o
d
p
1
p
2
)
x\equiv a_2p_1p_1'+a_1p_2p_2'\pmod {p_1p_2}
x≡a2p1p1′+a1p2p2′(modp1p2)
其中
p
1
p
1
′
≡
1
(
m
o
d
p
2
)
p_1p_1'\equiv1\pmod{p_2}
p1p1′≡1(modp2),
p
2
p
2
′
≡
1
(
m
o
d
p
1
)
p_2p_2'\equiv1\pmod{p_1}
p2p2′≡1(modp1)
记
a
2
p
1
p
1
′
+
a
1
p
2
p
2
′
=
a
4
a_2p_1p_1'+a_1p_2p_2'=a_4
a2p1p1′+a1p2p2′=a4,
x
=
a
5
p
1
p
2
+
a
4
x=a_5p_1p_2+a_4
x=a5p1p2+a4
考虑第三个同余式
a
5
p
1
p
2
+
a
4
≡
a
3
(
m
o
d
p
3
)
a
5
=
a
3
−
a
4
p
1
p
2
(
m
o
d
p
3
)
a_5p_1p_2+a_4\equiv a_3\pmod{p_3}\\ a_5=\frac{a_3-a_4}{p_1p_2}\pmod{p_3}
a5p1p2+a4≡a3(modp3)a5=p1p2a3−a4(modp3)
考虑是否被模掉一些东西
发现
a
4
,
a
5
a_4,a_5
a4,a5都是真实值,可以代入
x
=
a
5
p
1
p
2
+
a
4
x=a_5p_1p_2+a_4
x=a5p1p2+a4得到答案
太菜了
肝不动了
#include<bits/stdc++.h>
using namespace std;
#define in Read()
#define int long long
int in{
int i=0,f=1;char ch=0;
while(!isdigit(ch)&&ch!='-') ch=getchar();
if(ch=='-') ch=getchar(),f=-1;
while(isdigit(ch)) i=(i<<1)+(i<<3)+ch-48,ch=getchar();
return i*f;
}
const int N=1e6+5;
typedef long long ll;
typedef vector<int> poly;
int n,m,pmod,lim,rev[N];
int mod[5]={496762049,998244353,1004535809};
poly A[3],B[3];
ll a1,a2;
void print(poly f){
for(int i=0;i<f.size();++i) printf("%lld ",f[i]);
puts("");
return ;
}
int add(int a,int b,int id){return a+b>=mod[id]?a+b-mod[id]:a+b;}
int dec(int a,int b,int id){return a<b?a-b+mod[id]:a-b;}
int mul(int a,int b,int id){return 1ll*a*b%mod[id];}
int qpw(int a,int b,int id){
int res=1;
while(b){
if(b&1) res=mul(res,a,id);
a=mul(a,a,id);
b>>=1;
}
return res;
}
void init(int deg){
lim=1;
while(lim<deg) lim<<=1;
for(int i=0;i<lim;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)?lim>>1:0);
return;
}
void NTT(poly &f,bool sgn,int id){
for(int i=0;i<lim;++i)
if(i<rev[i]) swap(f[i],f[rev[i]]);
for(int len=1;len<lim;len<<=1){
int siz=len<<1;
int wn=qpw(3,(mod[id]-1)/siz,id);
for(int l=0;l<lim;l+=siz){
int w=1;
for(int i=l;i<l+len;++i){
int a=f[i],b=mul(f[i+len],w,id);
f[i]=add(a,b,id);
f[i+len]=dec(a,b,id);
w = mul(w, wn, id);
}
}
}
if(sgn) return;
int INV=qpw(lim,mod[id]-2,id);
reverse(f.begin()+1,f.end());
for(int i=0;i<lim;++i)
f[i] = mul(f[i], INV, id);
return;
}
poly mul(poly a,poly b,int id){
int deg=a.size()+b.size()-1;
if(a.size()<=32||b.size()<=32){
poly c(deg,0);
for(int i=0;i<=a.size();++i)
for(int j=0;j<b.size();++j)
c[i + j] = add(c[i + j], mul(a[i], b[j],id),id);
return c;
}
init(deg);
a.resize(lim),NTT(a,1,id);
b.resize(lim),NTT(b,1,id);
for(int i=0;i<lim;++i)
a[i] = mul(a[i], b[i],id);
NTT(a,0,id);
a.resize(deg);
return a;
}
ll sqpw(ll a,ll b,ll p){
ll res=1;
while(b){
if(b&1) res=res*a%p;
a=a*a%p;
b>>=1;
}
return res;
}
ll inv(ll x,ll p){
return sqpw(x%p,p-2,p);
}
signed main(){
n=in,m=in,pmod=in;
init(n+m);
for(int i=0;i<=n;++i){
int x=in;
A[0].push_back(x);
A[1].push_back(x);
A[2].push_back(x);
}
for(int i=0;i<=m;++i) {
int x=in;
B[0].push_back(x);
B[1].push_back(x);
B[2].push_back(x);
}
for(int id=0;id<3;++id) A[id]=mul(A[id],B[id],id);
const ll p1=mod[0],p2=mod[1],p3=mod[2],p1p2=1ll*mod[0]*mod[1];
const ll inv1=inv(p1,p2),inv2=inv(p2,p1),inv12=inv(p1p2,p3);
for(int i=0;i<=n+m;++i){
ll a=A[0][i],b=A[1][i],c=A[2][i];
ll d=(inv1*p1%p1p2*b%p1p2+inv2*p2%p1p2*a%p1p2+p1p2)%p1p2;
ll e=(c-d+p3)%p3*inv12%p3;
printf("%lld ",(p1p2%pmod*e%pmod+d+pmod)%pmod);
}
return 0;
}