这两种树的学习资料真不好找,找到了又写的是丑陋的链表
给大家送一点Bonus
,如果是二刷(并且像本蒟蒻一样第一遍没看懂)这两种树的同学可以进来点个赞了
二叉搜索树
二叉搜索树大家都很懂
中序遍历为原序列,维护左<根<右
可自己YY一下插入、删除、搜索的操作
Splay
旋一旋
自己想一想左儿子旋到根节点,右儿子旋到根节点
特别注意:
一条链的时候,不是莽起旋子节点,自己YY一条链看看哪样子旋减少了深度
是旋父节点再选子节点!
而这一步操作就是平衡的精髓
例 [HNOI2002]营业额统计
注意只能跟前面比,因此加一个点就计算一次
对于每次计算:先Splay,然后查询
Splay里面啥都干不了
#include<bits/stdc++.h>
using namespace std;
#define in Read()
int in{
int i=0,f=1;char ch=0;
while(!isdigit(ch)&&ch!='-') ch=getchar();
if(ch=='-') ch=getchar(),f=-1;
while(isdigit(ch)) i=(i<<1)+(i<<3)+ch-48,ch=getchar();
return i*f;
}
const int N=33000;
int n,root,ans;
struct Tree{
int lch,rch,fa,val;
#define lch(p) tre[(p)].lch
#define rch(p) tre[(p)].rch
#define fa(p) tre[(p)].fa
#define val(p) tre[(p)].val
}tre[N];
//void print_tree(int p){
// printf("%d: %d %d\n",p,lch(p),rch(p));
// if(lch(p)) print_tree(lch(p));
// if(rch(p)) print_tree(rch(p));
//}
void insert(int p,int rt){
if(val(p)<val(rt)){
if(!lch(rt)){
lch(rt)=p;
fa(p)=rt;
}else insert(p,lch(rt));
}
else{
if(!rch(rt)){
rch(rt)=p;
fa(p)=rt;
}else insert(p,rch(rt));
}
return;
}
bool as_right(int p){
return p==rch(fa(p));
}
void rotate(int x){
if(as_right(x)){
int f=fa(x),s=lch(x);
fa(x)=fa(f);
as_right(f)?rch(fa(f))=x:lch(fa(f))=x;
fa(f)=x;
lch(x)=f;
fa(s)=f;
rch(f)=s;
}else{
int f=fa(x),s=rch(x);
fa(x)=fa(f);
as_right(f)?rch(fa(f))=x:lch(fa(f))=x;
fa(f)=x;
rch(x)=f;
fa(s)=f;
lch(f)=s;
}
return;
}
void splay(int x){
while(fa(x)){
int y=fa(x),z=fa(y);
if(!z) rotate(x);
else{
if(as_right(x)==as_right(y))
rotate(y),rotate(x);
else
rotate(x),rotate(x);
}
}
root=x;
return;
}
int qmin(int p){
int res=lch(p);
if(!res) return res;
while(rch(res)) res=rch(res);
return res;
}
int qmax(int p){
int res=rch(p);
if(!res) return res;
while(lch(res)) res=lch(res);
return res;
}
int query(int p){
int pre=qmin(p),suf=qmax(p),res=2147483647;
if(pre) res=min(res,val(p)-val(pre));
if(suf) res=min(res,val(suf)-val(p));
return res;
}
void solve(int p){
insert(p,root);
splay(p);
ans+=query(p);//printf("ans+=%d\n",query(p));
return;
}
int main(){
n=in;
val(1)=in;root=1;
ans+=val(1);
for(int i=2;i<=n;++i){
val(i)=in;
solve(i);
//print_tree(root);
}
printf("%d\n",ans);
return 0;
}
Debug
- 查
rotate
:巧方法-认一个儿子认一个爸爸 - 死循环看哪里出0了,死循环爆栈会MLE
Treap
例 文艺平衡树
仅需支持区间翻转操作(似乎还比普通平衡树要简单一点呢!)
Splay艹:把
l
−
1
l-1
l−1旋到根节点,把
r
+
1
r+1
r+1旋到根的右儿子,那么右儿子的左儿子就是要修改的区间,一顿旋转完事(打tag)
Treap艹:把
[
l
,
r
]
[l,r]
[l,r]提出来(split
操作),翻转一下,放回去
merge
操作:
搜到叶节点,即可合并
对于两棵树 u , v u,v u,v,合并使 u u u在左边, v v v在右边
若 u u u优先级小,则合并 u u u的右儿子和 v v v,合并后结果塞到 u u u右儿子上去split
操作:
把根节点为 r t rt rt的区间 [ l , r ] [l,r] [l,r]分为 [ l , k ] [l,k] [l,k]与 [ k + 1 , r ] [k+1,r] [k+1,r]两段,并且根节点分别为 x , y x,y x,y
注意得到的根节点一定是“取出来”之后用的,不能用原树上记录的节点(因为操作过程中有改变 x , y x,y x,y的步骤)
这就有点类似权值线段树了(特别是 k k k,注意搜右边的时候 k k k要减,区间长度记得算根节点)
#include<bits/stdc++.h>
using namespace std;
#define in Read()
int in{
int i=0,f=1;char ch=0;
while(!isdigit(ch)&&ch!='-') ch=getchar();
if(ch=='-') ch=getchar(),f=-1;
while(isdigit(ch)) i=(i<<1)+(i<<3)+ch-48,ch=getchar();
return i*f;
}
const int N=1e5+5;
int n,m,root,tot;
struct Tree{
int lch,rch,siz,tag,pri,val;
#define lch(p) tre[(p)].lch
#define rch(p) tre[(p)].rch
#define siz(p) tre[(p)].siz
#define tag(p) tre[(p)].tag
#define pri(p) tre[(p)].pri
#define val(p) tre[(p)].val
}tre[N];
void push_up(int p){
siz(p)=siz(lch(p))+siz(rch(p))+1;
return;
}
void push_down(int p){
if(!tag(p)) return;
swap(lch(p),rch(p));
tag(lch(p))^=1;
tag(rch(p))^=1;
tag(p)=0;
return;
}
void print_tree(int p){
push_down(p);
if(lch(p)) print_tree(lch(p));
printf("%d ",val(p));
if(rch(p)) print_tree(rch(p));
return;
}
int merge(int x,int y){
if(!x||!y) return x+y;
if(pri(x)<pri(y)){
push_down(x);
rch(x)=merge(rch(x),y);
push_up(x);
return x;
}else{
push_down(y);
lch(y)=merge(x,lch(y));
push_up(y);
return y;
}
}
void split(int rt,int k,int &x,int &y){
if(!rt){
x=y=0;
return;
}
push_down(rt);
if(k>=siz(lch(rt))+1){
x=rt;
split(rch(rt),k-siz(lch(rt))-1,rch(x),y);
}else{
y=rt;
split(lch(rt),k,x,lch(y));
}
push_up(rt);
return;
}
void insert(int id){
++tot;
val(tot)=id;
pri(tot)=rand();
siz(tot)=1;
root=merge(root,tot);
return;
}
void rollover(int l,int r){
int x,y,z;
split(root,r,x,y);
split(x,l-1,x,z);
tag(z)^=1;
root=merge(merge(x,z),y);
return;
}
int main(){
srand(time(0));
n=in,m=in;
for(int i=1;i<=n;++i) insert(i);
for(int i=1;i<=m;++i){
int l=in,r=in;
rollover(l,r);
}
print_tree(root);
return 0;
}
后记
看了一下Splay的复杂度势能分析,可是势能分析正确性呢?
推荐我的题单哦