数据结构初学过程中对算法效率度量的理解

引例:
对于给定数组a[8]={10,20,30,40,50,60,70,80};
如何将数组前三个元素移到数组后面使得:
a[8]={40,50,60,70,80,10,20,30}?

1、第一种方法(耗费内存):
定义一个新的空白数组b[],将a[3]往后的元素依次放入b[0]至b[4],接着将a[0]至a[2]放入b[5]至b[7].最后用代码a[i] = b[i];将元素移入a[]中即可。
(第1步)
这里写图片描述
(第2步)
这里写图片描述

代码如下:

int i,j;
int b[20];

for(i=3,j=0; i<8; i++,j++)
    b[j] = a[i];
for(i=0; j<8; i++,j++)
    b[j] = a[i];
for(i=0; i<8; i++)
    a[i] = b[i];

此种方法,虽然时间复杂度变小了,但是空间复杂度较大。由于分配了一个至少与数组a[]相等的数组b[]的存储空间,在数组a[]长度不是8,而是几千几万时,内存的耗费就显得更为突出。

2、简化思考:
对于a[8]={10,20,30,40,50,60,70,80};如何将10(第一个元素a[0])移到数组最后(最后一个元素a[7])?
分析:将a[0]内容移到a[7]位置,只需将a[7]内容换成a[0]即可:
即a[7] = a[0];
但是,这样a[7]的原有的数据会丢失,所以应该用以下代码实现:

t = a[0];
for(i=0;i<7;i++)
    a[i] = a[i+1];
a[i] = t;

这里写图片描述

将a[0]的数据先暂时存储在另一变量t所属空间内,然后用for循环将a[i]整体(一个一个按顺序)前移一个位置,最后将a[0]存入a[7]即可。

3、举一反三:
对于要转移的前三个元素,只需要将以上步骤执行三次即可。

for(i=0; i<3; i++)
{
    t = a[0];
    for(j=0; j<7; j++)
        a[j] = a[j+1];
    a[j] = t;
}

此算法,由于旨在数组a[]自身内存及t的内存上做操作,空间复杂度小,但是时间复杂度相对较高,并非最好的算法。

4、如何做到空间复杂度与时间复杂度都比较小:
既要在a[]自身空间内进行操作,又要循环嵌套少一点,函数调用便显得尤为重要:
将a[i]前后调换:

for(i=0,j=0; j>i; i++,j–)
{
    t = a[i];
    a[i] = a[j];
    a[j] = t;
}
for(i=0,j=4; j>i; i++,j–)
{
    t = a[i];
    a[i] = a[j];
    a[j] = t;
}
for(i=5,j=7; j>i; i++,j–)
{
    t = a[i];
    a[i] = a[j];
    a[j] = t;
}

这里写图片描述
此算法是将置换使用了三次,既没有过分浪费内存,又没有过分浪费时间,时间复杂度和空间复杂度相对来说都较小。但是代码量稍大,可通过函数调用来解决(如下)。

void move_element(int a[],int s,int e)
{
    for(i=5,j=7; j>i; i++,j--)
    {
        t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}
int main(void)
{
    int i;
    int a[8]={10,20,30,40,50,60,70,80};

    move_element(a,0,7);
    move_element(a,0,4);
    move_element(a,5,7);//函数发送的是数组首元素地址和数组区间(而非长度)

    for(i=0; i<8; i++)
        printf("%-5d",a[i]);
    return 0;
}

到此为止,这个简单的程序算是基本写完了。

5、总结:
(1)所有数据集合的移动算法都可以通过浪费空间来解决,但是都不是理想的算法。
(2)描写算法不可以浪费空间为前提。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值