10、智能家居语音认证与安全防护:WSVA系统解析

智能家居语音认证与安全防护:WSVA系统解析

1. 智能家居语音控制现状与风险

在智能家居环境中,用户可通过图像传感、无线通信和语音控制命令等多种用户界面来操控诸如灯光、温度控制器、电子开关、微波炉、冰箱等家用电器。据2020年的市场研究报告预测,到2025年,语音界面将成为智能家居的主要用户界面,全球相关收入将达到73亿美元。目前,典型的物联网语音控制系统包括亚马逊Alexa、三星SmartThings、谷歌Home等。

然而,语音固有的广播特性为攻击者注入恶意命令(即欺骗攻击)打开了大门。除了经典的重放攻击,研究人员还提出了利用智能音箱漏洞的新兴攻击方式。在硬件方面,麦克风频率响应的非线性特性为基于听不见的超声波攻击(如海豚攻击和后门攻击)提供了机会;在软件方面,语音识别和说话人验证所采用的深度学习模型被证明容易受到隐藏语音、CommanderSong和用户模仿等新兴对抗攻击。这些欺骗攻击给智能音箱带来了新的安全问题(如故意打开智能恒温器)和隐私风险(如查询用户的日程信息),引发了广泛关注。

为了抵御语音欺骗攻击,最直观的防御策略是基于语音密码的访问控制,即用户在输入语音控制命令之前需要说出一个特殊密码。但这种方式要么对用户不方便,要么容易受到窃听攻击。因此,活体检测作为一种有效的对策被提出。活体检测利用欺骗攻击中的语音是由电子设备播放这一事实,将人类和机器之间不同的物理特征作为“活体”因素。现有的对策(即活体检测)可分为多因素认证和被动方案,本文主要关注多因素认证。

2. 现有多因素认证活体检测方案的局限性

多因素认证的活体检测利用与语音控制系统操作密切相关的信息(如摄像头收集的图像/视频、扬声器发出的磁场、智能手机不同麦克风的到

考虑可再生能源出力不确定性的商业园区用户需求响应策略(Matlab代码实现)内容概要:本文围绕“考虑可再生能源出力不确定性的商业园区用户需求响应策略”展开,结合Matlab代码实现,研究在可再生能源(如风电、光伏)出力具有不确定性的背景下,商业园区如何制定有效的需求响应策略以优化能源调度和提升系统经济性。文中可能涉及不确定性建模(如场景生成缩减)、优化模型构建(如随机规划、鲁棒优化)以及需求响应机制设计(如价格型、激励型),并通过Matlab仿真验证所提策略的有效性。此外,文档还列举了大量相关的电力系统、综合能源系统优化调度案例代码资源,涵盖微电网调度、储能配置、负荷预测等多个方向,形成一个完整的科研支持体系。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源系统规划运行的工程技术人员。; 使用场景及目标:①学习如何建模可再生能源的不确定性并应用于需求响应优化;②掌握使用Matlab进行商业园区能源系统仿真优化调度的方法;③复现论文结果或开展相关课题研究,提升科研效率创新能力。; 阅读建议:建议结合文中提供的Matlab代码实例,逐步理解模型构建求解过程,重点关注不确定性处理方法需求响应机制的设计逻辑,同时可参考文档中列出的其他资源进行扩展学习交叉验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值