一.题目
排序 - 冒泡排序、选择排序、归并排序、快速排序
二.总代码
"""
排序 - 冒泡排序、选择排序、归并排序、快速排序
冒泡排序 - O(n ** 2):两两比较,大的下沉
35, 97, 12, 68, 55, 73, 81, 40
35, 12, 68, 55, 73, 81, 40, [97]
12, 35, 55, 68, 73, 40, [81]
12, 35, 55, 68, 40, [73]
...
选择排序 - O(n ** 2):每次从剩下元素中选择最小
-----------------------------------------
归并排序 - O(n * log_2 n) - 高级排序算法
35, 97, 12, 68, 55, 73, 81, 40
[35, 97, 12, 68], [55, 73, 81, 40]
[35, 97], [12, 68], [55, 73], [81, 40]
[35], [97], [12], [68], [55], [73], [81], [40]
[35, 97], [12, 68], [55, 73], [40, 81]
[12, 35, 68, 97], [40, 55, 73, 81]
[12, 35, 40, 55, 68, 73, 81, 97]
-----------------------------------------
快速排序 - 以枢轴为界将列表中的元素划分为两个部分,左边都比枢轴小,右边都比枢轴大
35, 97, 12, 68, 55, 73, 81, 40
35, 12, [40], 68, 55, 73, 81, 97
[12], 35, [40], 68, 55, 73, 81, [97]
[12], 35, [40], 55, [68], 73, 81, [97]
[12], 35, [40], 55, [68], 73, [81], [97]
"""
class Person(object):
"""人"""
def __init__(self, name, age):
self.name = name
self.age = age
# def __gt__(self, other):
# return self.name > other.name
def __str__(self):
return f'{self.name}: {self.age}'
def __repr__(self):
return self.__str__()
def select_sort(origin_items, comp=lambda x, y: x < y):
"""简单选择排序"""
items = origin_items[:]
for i in range(len(items) - 1):
min_index = i
for j in range(i + 1, len(items)):
if comp(items[j], items[min_index]):
min_index = j
items[i], items[min_index] = items[min_index], items[i]
return items
# 函数的设计要尽量做到无副作用(不影响调用者)
# 9 1 2 3 4 5 6 7 8
# 9 2 3 4 5 6 7 8 1
# *前面的参数叫位置参数,传参时只需要对号入座即可
# *后面的参数叫命名关键字参数,传参时必须给出参数名和参数值
# *args - 可变参数 - 元组
# **kwargs - 关键字参数 - 字典
def bubble_sort(origin_items, *, comp=lambda x, y: x > y):
"""冒泡排序"""
items = origin_items[:]
for i in range(1, len(items)):
swapped = False
for j in range(i - 1, len(items) - i):
if comp(items[j], items[j + 1]):
items[j], items[j + 1] = items[j + 1], items[j]
swapped = True
if swapped:
swapped = False
for j in range(len(items) - i - 1, i - 1, -1):
if comp(items[j - 1], items[j]):
items[j], items[j - 1] = items[j - 1], items[j]
swapped = True
if not swapped:
break
return items
def merge_sort(items, comp=lambda x, y: x <= y):
"""归并排序"""
if len(items) < 2:
return items[:]
mid = len(items) // 2
left = merge_sort(items[:mid], comp)
right = merge_sort(items[mid:], comp)
return merge(left, right, comp)
def merge(items1, items2, comp=lambda x, y: x <= y):
"""合并(将两个有序列表合并成一个新的有序列表)"""
items = []
index1, index2 = 0, 0
while index1 < len(items1) and index2 < len(items2):
if comp(items1[index1], items2[index2]):
items.append(items1[index1])
index1 += 1
else:
items.append(items2[index2])
index2 += 1
items += items1[index1:]
items += items2[index2:]
return items
def quick_sort(origin_items, comp=lambda x, y: x <= y):
"""快速排序"""
items = origin_items[:]
_quick_sort(items, 0, len(items) - 1, comp)
return items
def _quick_sort(items, start, end, comp):
"""递归调用划分和排序"""
if start < end:
pos = _partition(items, start, end, comp)
_quick_sort(items, start, pos - 1, comp)
_quick_sort(items, pos + 1, end, comp)
def _partition(items, start, end, comp):
"""划分"""
pivot = items[end]
i = start - 1
for j in range(start, end):
if comp(items[j], pivot):
i += 1
items[i], items[j] = items[j], items[i]
items[i + 1], items[end] = items[end], items[i + 1]
return i + 1
def main():
"""主函数"""
items = [35, 97, 12, 68, 55, 73, 81, 40]
# print(bubble_sort(items))
# print(select_sort(items))
# print(merge_sort(items))
print(quick_sort(items))
items2 = [
Person('Wang', 25), Person('Luo', 39),
Person('Zhang', 50), Person('He', 20)
]
# print(bubble_sort(items2, comp=lambda p1, p2: p1.age > p2.age))
# print(select_sort(items2, comp=lambda p1, p2: p1.name < p2.name))
# print(merge_sort(items2, comp=lambda p1, p2: p1.age <= p2.age))
print(quick_sort(items2, comp=lambda p1, p2: p1.age <= p2.age))
items3 = ['apple', 'orange', 'watermelon', 'durian', 'pear']
# print(bubble_sort(items3))
# print(bubble_sort(items3, comp=lambda x, y: len(x) > len(y)))
# print(merge_sort(items3))
print(merge_sort(items3))
if __name__ == '__main__':
main()
三.学习
1.知识点:类的创建
代码:
class Person(object):
"""人"""
def __init__(self, name, age):
self.name = name
self.age = age
def __gt__(self, other):
return self.name > other.name
def __str__(self):
return f'{self.name}: {self.age}'
def __repr__(self):
return self.__str__()
理解:面对对象思想
①def init(self, name, age):
第一个参数是代表这个类的本身,我感觉可以类似为C++中的this。
注:不一定必须为self
第二个,第三个参数可以理解为成员属性
②def gt(self, other):
定义一个比较运算符,可以理解为C++中的比较运算符重载,当出现类与类的相比时,就会出现名称的相比,他们之间的相比是依据Unicode码值进行比较的。
③def str(self):
其中f’{self.name}: {self.age}',是将两个成员属性转换输出内容为name:age的字符串,并且返回
④def repr(self):
与③相同的是,都是返回字符串类,但是对于③来说返回的是友好字符串,对于④来说返回的是官方字符串。前者是展示给用户看的,后者是在开发与调试的过程中使用。
2.知识点:简单排序
代码:
def select_sort(origin_items, comp=lambda x, y: x < y):
"""简单选择排序"""
items = origin_items[:]
for i in range(len(items) - 1):
min_index = i
for j in range(i + 1, len(items)):
if comp(items[j], items[min_index]):
min_index = j
items[i], items[min_index] = items[min_index], items[i]
return items
①comp=lambda x, y: x < y
lambda是一个匿名函数,相对于传统函数比较简洁,但是不能运行比较复杂的函数,类似于C++中的内联函数,语法:lambda 参数:返回值
②items = origin_items[:]
python中的切片操作,列表[start:end](第一位数的索引是0),切取后赋值给一个新的列表,如果省略start和end就代表全部复制。
③for i in range(len(items) - 1):
在range函数中只写一个参数,返回从0~该参数(不包括该参数)的所有整数值。返回值是一个可迭代的对象,所谓可迭代的对象,指的是它每一次循环输出只一个对象,而不是一下子输出一个序列。这样可以省下更多的内存。
3.知识点:冒泡排序
代码:
def bubble_sort(origin_items, *, comp=lambda x, y: x > y):
"""冒泡排序"""
items = origin_items[:]
for i in range(1, len(items)):
swapped = False
for j in range(i - 1, len(items) - i):
if comp(items[j], items[j + 1]):
items[j], items[j + 1] = items[j + 1], items[j]
swapped = True
if swapped:
swapped = False
for j in range(len(items) - i - 1, i - 1, -1):
if comp(items[j - 1], items[j]):
items[j], items[j - 1] = items[j - 1], items[j]
swapped = True
if not swapped:
break
return items
① swapped = False
做标记:侦察是否还需要继续循环
② for j in range(len(items) - i - 1, i - 1, -1):
range函数的扩增使用,意味着range函数不止能迭代整型数据,参数列表中,第一个第二参数是起终(不包括终)数据,第三个参数是步长,为矢量。
③if语句后面需要加‘:’和for以及def相同
4.知识点:归并排序
代码:
def merge_sort(items, comp=lambda x, y: x <= y):
"""归并排序"""
if len(items) < 2:
return items[:]
mid = len(items) // 2
left = merge_sort(items[:mid], comp)
right = merge_sort(items[mid:], comp)
return merge(left, right, comp)
def merge(items1, items2, comp=lambda x, y: x <= y):
"""合并(将两个有序列表合并成一个新的有序列表)"""
items = []
index1, index2 = 0, 0
while index1 < len(items1) and index2 < len(items2):
if comp(items1[index1], items2[index2]):
items.append(items1[index1])
index1 += 1
else:
items.append(items2[index2])
index2 += 1
items += items1[index1:]
items += items2[index2:]
return items
①merge_sort(items[:mid], comp)
其中merge_sort的文档:
def merge_sort(items: {__len__},
comp: (x: Any, y: Any) -> bool = lambda x, y: x <= y)
-> list
Ⅰ.items: {len}
表示items是具有__len__类型的参数对象,__len__类型就是序列类型。
② items.append(items1[index1])
append函数是标准库中的函数,就是把参数添加到目标序列的末尾
③ items += items1[index1:]
本质是一个切片
5.知识点:快速排序
代码:
def quick_sort(origin_items, comp=lambda x, y: x <= y):
"""快速排序"""
items = origin_items[:]
_quick_sort(items, 0, len(items) - 1, comp)
return items
def _quick_sort(items, start, end, comp):
"""递归调用划分和排序"""
if start < end:
pos = _partition(items, start, end, comp)
_quick_sort(items, start, pos - 1, comp)
_quick_sort(items, pos + 1, end, comp)
def _partition(items, start, end, comp):
"""划分"""
pivot = items[end]
i = start - 1
for j in range(start, end):
if comp(items[j], pivot):
i += 1
items[i], items[j] = items[j], items[i]
items[i + 1], items[end] = items[end], items[i + 1]
return i + 1
①range(start, end):
迭代范围前开后闭,步长默认为1.
②快速排序的理解
大致思路是先确定末尾数的位置,在代码中,我们可以看出末尾数与其他数字都比了一遍大小,如果比他小的数,就一次从索引为0的数交换位置,直到遍及全部,那么最后一次交换的索引+1就是它的位置。
这样,就把列表分成两部分,左边是全部比末尾数小的,右边是比它大的。那么它的位置就确定了
所以,我们不难发现,在后面的递归中,两部分调用 _quick_sort函数将这个数避开。
反复递归,直到start和end相等。那么列表中的数便有了排序。
总的来说,就是固定一个数的位置,以此为界限,分割。重复直到剩下一个数
四.问题
1.问题:str和repr的返回字符串不同有什么意义?
举一个例子就可以理解了
import datetime
date = datetime.date(2020, 1, 1)
print(str(date)) # "2020-01-01"
print(repr(date)) # "datetime.date(2020, 1, 1)"
前者更多的是呈现给用户,后者更多呈现给程序。
2.问题:列表与序列的关系?
序列包含列表
序列还包含元组、字符串等
3.问题:range函数和enumerate函数的区别?
前者参数是一个整型值,后者的参数是一个序列。但作用都是迭代数集。
4.问题:做标记的意义是什么?
我的理解:表明一种状态,比如本篇代码代码中,做了是否进行交换的标记,如果进行了交换,那么这段数据就处于可能还需要交换的状态,如果没有交换,那么该段数据就处于不可交换的状态。
5.问题:归并排序的思想是什么?
我的理解:采用递归思想
递:将列表切成双份,一直切,直到一个列表只有两个元素(其实可以理解为列表中里面有列表)
归:先从最底层,将两个元素比较排序,然后合并作为一个列表,归到上一层(此时每个列表都具有排序),进行排序,直到有一个列表中的数全部添加到新列表中,那么此时剩余列表直接添加到新列表的末尾中(由于剩余列表原先是有排序的,因为它与另一个列表的末尾数进行了比较,所以满足的关系,可以产生递推连锁的大小关系,故可以直接加到新列表的末尾),如此反复直到归到最初的列表。