题目描述
瑞瑞想要亲自修复在他的一个小牧场周围的围栏。他测量栅栏并发现他需要N(1≤N≤20,000)根木板,每根的长度为整数Li(1≤Li≤50,000)。于是,他神奇地买了一根足够长的木板,长度为所需的N根木板的长度的总和,他决定将这根木板切成所需的N根木板。(瑞瑞在切割木板时不会产生木屑,不需考虑切割时损耗的长度)瑞瑞切割木板时使用的是一种特殊的方式,这种方式在将一根长度为x的模板切为两根时,需要消耗x个单位的能量。瑞瑞拥有无尽的能量,但现在提倡节约能量,所以作为榜样,他决定尽可能节约能量。显然,总共需要切割N-1次,问题是,每次应该怎么切呢?请编程计算最少需要消耗的能量总和。
输入输出格式
输入格式:
第一行: 整数N,表示所需木板的数量
第2到N+1行: 每行为一个整数,表示一块木板的长度
输出格式:
一个整数,表示最少需要消耗的能量总和
输入输出样例
输入样例#1
3 8 5 8
输出样例#1
34
说明
将长度为21的木板,第一次切割为长度为8和长度为13的,消耗21个单位的能量,第二次将长度为13的木板切割为长度为5和8的,消耗13个单位的能量,共消耗34个单位的能量,是消耗能量最小的方案。
思路
和合并果子那题是一个道理。由于当时做题时还没学堆和优先队列,所以这题我用优先队列做。
每次找出最小的两个,将他们的和存起来后将他们本身删掉,然后参照合并果子合并,再求它们的和。
#include <stdio.h>
#include <queue>
#include <iostream>
using namespace std;
priority_queue<long long int,vector<long long int>,greater<long long int> > pque;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
long long int i,n,s(0);
cin>>n;
for(i=1;i<=n;i++)
{
int x;
cin>>x;
pque.push(x);
}
for(i=1;i<=n-1;i++)
{
int sum;
sum=pque.top();
pque.pop();
sum=sum+pque.top();
pque.pop();
s=s+sum;
pque.push(sum);
}
cout<<s<<endl;
return 0;
}