[洛谷]P1118 [USACO06FEB]数字三角形 (#搜索)

本文介绍了一个有趣的数学游戏,玩家需要根据最终数字和序列长度,逆向找出初始的数字序列。文章详细解释了游戏规则,并提供了一个使用深度优先搜索(DFS)算法的解决方案,帮助读者理解如何从给定的最终结果逆向推导出字典序最小的起始序列。
摘要由CSDN通过智能技术生成

题目描述

FJ and his cows enjoy playing a mental game. They write down the numbers from 11 toN(1 \le N \le 10)N(1≤N≤10) in a certain order and then sum adjacent numbers to produce a new list with one fewer number. They repeat this until only a single number is left. For example, one instance of the game (when N=4N=4) might go like this:

    3   1   2   4
      4   3   6
        7   9
         16

Behind FJ's back, the cows have started playing a more difficult game, in which they try to determine the starting sequence from only the final total and the number NN. Unfortunately, the game is a bit above FJ's mental arithmetic capabilities.

Write a program to help FJ play the game and keep up with the cows.

有这么一个游戏:

写出一个11至NN的排列a_iai​,然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少11,直到只剩下一个数字位置。下面是一个例子:

3,1,2,43,1,2,4

4,3,64,3,6

7,97,9

1616

最后得到1616这样一个数字。

现在想要倒着玩这样一个游戏,如果知道NN,知道最后得到的数字的大小sumsum,请你求出最初序列a_iai​,为11至NN的一个排列。若答案有多种可能,则输出字典序最小的那一个。

[color=red]管理员注:本题描述有误,这里字典序指的是1,2,3,4,5,6,7,8,9,10,11,121,2,3,4,5,6,7,8,9,10,11,12

而不是1,10,11,12,2,3,4,5,6,7,8,91,10,11,12,2,3,4,5,6,7,8,9[/color]

输入输出格式

输入格式:

两个正整数n,sum。

输出格式:

输出包括1行,为字典序最小的那个答案。

当无解的时候,请什么也不输出。(好奇葩啊)

输入输出样例

输入样例#1

4 16

输出样例#1

3 1 2 4

说明

对于40\%40%的数据,n≤7n≤7;

对于80\%80%的数据,n≤10n≤10;

对于100\%100%的数据,n≤12,sum≤12345n≤12,sum≤12345。


思路

dfs大法好!简单粗暴没得跑!

其实就是和全排列一个概念。

#include <stdio.h>
#include <iostream>
#include <algorithm>
using namespace std;
int a[21],dp[21][21],n,lxy,f;
bool b[21];
void dfs(int i,int s)//i是第几层,s是当前答案 
{
	if(s>lxy || f==1)//比数字大是显然是不可以作为答案的,另外如果已经找到了一种算符就不用再找了 
	{
		return;
	}
	register int j;
	if(i==n+1 && s==lxy)//如果到达边界并且正好等于数字的大小 
	{
		for(j=1;j<=n;j++)
		{
			cout<<a[j]<<' ';
		}
		f=1;//标记走过了,剩下的都不用再走了 
		return;
	}
	for(j=1;j<=n;j++)
	{
		if(b[j]==0)
		{
			a[i]=j;//其实可以用next_permutation,但是到13的时候会TLE,也许可以优化。 
			b[j]=1;//这个其实就是全排列思想 
			dfs(i+1,s+j*dp[n][i]); 
			b[j]=0;//为什么要回溯?因为这是要搜索到所有的算符种数 
		}
	}
	return;
}
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	register int i,j;
	cin>>n>>lxy;
	dp[1][1]=1;
	for(i=2;i<=n;i++)
	{
		for(j=1;j<=i;j++)
		{
			dp[i][j]=dp[i-1][j-1]+dp[i-1][j];//先把杨辉三角算出来 
		}
	}
	dfs(1,0);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值