[洛谷]P1064 金明的预算方案 (#背包dp)

84 篇文章 1 订阅
49 篇文章 0 订阅

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有00个、11个或22个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是1010元的整数倍)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第jj件物品的价格为v_[j]v[​j],重要度为w_[j]w[​j],共选中了kk件物品,编号依次为j_1,j_2,…,j_kj1​,j2​,…,jk​,则所求的总和为:

v_[j_1] \times w_[j_1]+v_[j_2] \times w_[j_2]+ …+v_[j_k] \times w_[j_k]v[​j1​]×w[​j1​]+v[​j2​]×w[​j2​]+…+v[​jk​]×w[​jk​]。

请你帮助金明设计一个满足要求的购物单。

输入格式

第11行,为两个正整数,用一个空格隔开:

N mNm (其中N(<32000)N(<32000)表示总钱数,m(<60)m(<60)为希望购买物品的个数。) 从第22行到第m+1m+1行,第jj行给出了编号为j-1j−1的物品的基本数据,每行有33个非负整数

v p qvpq (其中vv表示该物品的价格(v<10000v<10000),p表示该物品的重要度(1-51−5),qq表示该物品是主件还是附件。如果q=0q=0,表示该物品为主件,如果q>0q>0,表示该物品为附件,qq是所属主件的编号)

输出格式

一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000<200000)。

输入输出样例

输入 #1

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

输出 #1

2200

说明/提示

NOIP 2006 提高组 第二题


思路

01背包的变形。我们把题目中对于每一个物品的重要程度×物品的价值定义为背包问题中的价值,把物品的价值看成背包问题中的体积。

在一般的01背包中,对于每一个物品,都有2种选择:

1.选,背包容量减去那个重量,总价值加上那个价值;

2.不选,然后考虑下一个。

令dp[i][j]表示在前i件物品中选择若干件放在容量为j的背包中,可以取得的最大价值。则:

当w[i]>背包容量,无法入包

dp[i][j]=dp[i-1][j]

否则

dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])

回到本题,可以发现这道题的决策有5个,分别是:

1.不选,然后考虑下一个;

2.只选主件

3.选主件并且选附件1

4.选主件并且选附件2

5.我全都要!

等等,似乎有一个问题,有些主件有附件,而有些主件没有附件,怎么办?
我们可以假设每一个主件都有2个附件,假如题目中没有给出主件的附件话,我们就认为这个主件的附件是存在的,且价格和重要度为0。这个假设不会影响到答案的正确性。

这道题和纯01背包的区别:

1.01背包问题对当前物品考虑的只有选和不选两种情况,而此题需要考虑上面所说的5种不同的方案。这是最显著的区别。

2.01背包问题是用v[i]来保存第i个物品的价值,而此题需要用v[i]来保存第i个物品和它的两个附件的价值,此时我们需要二维数组来实现,物品体积w同样需要用二维数组来保存。

令v[i][0]表示第i个物品的主件价值, v[i][1]表示第i个物品的第一个附件的价值,v[i][2]表示第i个物品的第二个附件的价值。

令w[i][0]表示第i个物品的主件重量,w[i][1]表示第i个物品的第一个附件的重量,w[i][2]表示第i个物品的第二个附件的重量(体积)。

其实,在第2点当中,体现出了本题其实可以采用树形dp的方法。附件完全可以看做主件的子节点,这里不加深入讨论。

令dp[i][j]为前i件物品中选择若干件放在容量为j的背包中,可以取得的最大价值。则:

当w[i][0]>背包容量,主件都无法入包

dp[i][j]=dp[i-1][j]

否则

1.选主件

dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i][0]]+v[i][0]*w[i][0]) (w[i][0]>背包容量)

2.选主件+附件1

dp[i][j]=max(dp[i][j],dp[i-1][j-v[i][0]-v[i][1]]+v[i][0]*w[i][0]+v[i][1]*w[i][1]) (w[i][0]+w[i][1]>背包容量)

3.选主件+附件2

dp[i][j]=max(dp[i][j],dp[i-1][j-v[i][0]-v[i][2]]+v[i][0]*w[i][0]+v[i][2]*w[i][2]) (w[i][0]+w[i][2]>背包容量)

4.选主件+附件1+附件2

dp[i][j]=max(dp[i][j],dp[i-1][j-v[i][0]-v[i][1]-v[i][2]]+v[i][0]*w[i][0]+v[i][1]*w[i][1]+v[i][2]*w[i][2]) (w[i][0]+w[i][1]+w[i][2]>背包容量)

答案为dp[m][n]。

#include <stdio.h>
#include <iostream>
using namespace std;
int n,m,s;
int w[61][3],val[61][3],dp[61][32001];
signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	register int i,j;
	cin>>n>>m;
	for(i=1;i<=m;i++)
	{
		int v,q,p;
		cin>>v>>p>>q;
		if(q==0)//主件 
		{
			w[i][0]=p;
			val[i][0]=v;
		}
		else//附件 
		{
			if(val[q][1]==0)
			{
				val[q][1]=v;
				w[q][1]=p;
			}
			else
			{
				val[q][2]=v;
				w[q][2]=p;
			}
		}
	}
	for(i=1;i<=m;i++)
	{
		for(j=1;j<=n;j++)
		{
			if(j-val[i][0]>=0)
			{
				dp[i][j]=max(dp[i-1][j],dp[i-1][j-val[i][0]]+val[i][0]*w[i][0]);//仅主件 
				if(j-val[i][0]-val[i][1]>=0)//主件+附件1 
				{
					dp[i][j]=max(dp[i][j],dp[i-1][j-val[i][0]-val[i][1]]+val[i][0]*w[i][0]+val[i][1]*w[i][1]);
				}
				if(j-val[i][0]-val[i][2]>=0)//主件+附件2 
				{
					dp[i][j]=max(dp[i][j],dp[i-1][j-val[i][0]-val[i][2]]+val[i][0]*w[i][0]+val[i][2]*w[i][2]);
				}
				if(j-val[i][0]-val[i][1]-val[i][2]>=0)//主件+附件1+附件2 
				{
					dp[i][j]=max(dp[i][j],dp[i-1][j-val[i][0]-val[i][1]-val[i][2]]+val[i][0]*w[i][0]+val[i][1]*w[i][1]+val[i][2]*w[i][2]);
				}
			}
			else
			{
				dp[i][j]=dp[i-1][j];//什么都装不了 
			}
		}
	}
	cout<<dp[m][n]<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值