题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有00个、11个或22个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是1010元的整数倍)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第jj件物品的价格为v_[j]v[j],重要度为w_[j]w[j],共选中了kk件物品,编号依次为j_1,j_2,…,j_kj1,j2,…,jk,则所求的总和为:
v_[j_1] \times w_[j_1]+v_[j_2] \times w_[j_2]+ …+v_[j_k] \times w_[j_k]v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]。
请你帮助金明设计一个满足要求的购物单。
输入格式
第11行,为两个正整数,用一个空格隔开:
N mNm (其中N(<32000)N(<32000)表示总钱数,m(<60)m(<60)为希望购买物品的个数。) 从第22行到第m+1m+1行,第jj行给出了编号为j-1j−1的物品的基本数据,每行有33个非负整数
v p qvpq (其中vv表示该物品的价格(v<10000v<10000),p表示该物品的重要度(1-51−5),qq表示该物品是主件还是附件。如果q=0q=0,表示该物品为主件,如果q>0q>0,表示该物品为附件,qq是所属主件的编号)
输出格式
一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000<200000)。
输入输出样例
输入 #1
1000 5 800 2 0 400 5 1 300 5 1 400 3 0 500 2 0
输出 #1
2200
说明/提示
NOIP 2006 提高组 第二题
思路
01背包的变形。我们把题目中对于每一个物品的重要程度×物品的价值定义为背包问题中的价值,把物品的价值看成背包问题中的体积。
在一般的01背包中,对于每一个物品,都有2种选择:
1.选,背包容量减去那个重量,总价值加上那个价值;
2.不选,然后考虑下一个。
令dp[i][j]表示在前i件物品中选择若干件放在容量为j的背包中,可以取得的最大价值。则:
当w[i]>背包容量,无法入包
dp[i][j]=dp[i-1][j]
否则
dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])
回到本题,可以发现这道题的决策有5个,分别是:
1.不选,然后考虑下一个;
2.只选主件
3.选主件并且选附件1
4.选主件并且选附件2
5.我全都要!
等等,似乎有一个问题,有些主件有附件,而有些主件没有附件,怎么办?
我们可以假设每一个主件都有2个附件,假如题目中没有给出主件的附件话,我们就认为这个主件的附件是存在的,且价格和重要度为0。这个假设不会影响到答案的正确性。
这道题和纯01背包的区别:
1.01背包问题对当前物品考虑的只有选和不选两种情况,而此题需要考虑上面所说的5种不同的方案。这是最显著的区别。
2.01背包问题是用v[i]来保存第i个物品的价值,而此题需要用v[i]来保存第i个物品和它的两个附件的价值,此时我们需要二维数组来实现,物品体积w同样需要用二维数组来保存。
令v[i][0]表示第i个物品的主件价值, v[i][1]表示第i个物品的第一个附件的价值,v[i][2]表示第i个物品的第二个附件的价值。
令w[i][0]表示第i个物品的主件重量,w[i][1]表示第i个物品的第一个附件的重量,w[i][2]表示第i个物品的第二个附件的重量(体积)。
其实,在第2点当中,体现出了本题其实可以采用树形dp的方法。附件完全可以看做主件的子节点,这里不加深入讨论。
令dp[i][j]为前i件物品中选择若干件放在容量为j的背包中,可以取得的最大价值。则:
当w[i][0]>背包容量,主件都无法入包
dp[i][j]=dp[i-1][j]
否则
1.选主件
dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i][0]]+v[i][0]*w[i][0]) (w[i][0]>背包容量)
2.选主件+附件1
dp[i][j]=max(dp[i][j],dp[i-1][j-v[i][0]-v[i][1]]+v[i][0]*w[i][0]+v[i][1]*w[i][1]) (w[i][0]+w[i][1]>背包容量)
3.选主件+附件2
dp[i][j]=max(dp[i][j],dp[i-1][j-v[i][0]-v[i][2]]+v[i][0]*w[i][0]+v[i][2]*w[i][2]) (w[i][0]+w[i][2]>背包容量)
4.选主件+附件1+附件2
dp[i][j]=max(dp[i][j],dp[i-1][j-v[i][0]-v[i][1]-v[i][2]]+v[i][0]*w[i][0]+v[i][1]*w[i][1]+v[i][2]*w[i][2]) (w[i][0]+w[i][1]+w[i][2]>背包容量)
答案为dp[m][n]。
#include <stdio.h>
#include <iostream>
using namespace std;
int n,m,s;
int w[61][3],val[61][3],dp[61][32001];
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
register int i,j;
cin>>n>>m;
for(i=1;i<=m;i++)
{
int v,q,p;
cin>>v>>p>>q;
if(q==0)//主件
{
w[i][0]=p;
val[i][0]=v;
}
else//附件
{
if(val[q][1]==0)
{
val[q][1]=v;
w[q][1]=p;
}
else
{
val[q][2]=v;
w[q][2]=p;
}
}
}
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
{
if(j-val[i][0]>=0)
{
dp[i][j]=max(dp[i-1][j],dp[i-1][j-val[i][0]]+val[i][0]*w[i][0]);//仅主件
if(j-val[i][0]-val[i][1]>=0)//主件+附件1
{
dp[i][j]=max(dp[i][j],dp[i-1][j-val[i][0]-val[i][1]]+val[i][0]*w[i][0]+val[i][1]*w[i][1]);
}
if(j-val[i][0]-val[i][2]>=0)//主件+附件2
{
dp[i][j]=max(dp[i][j],dp[i-1][j-val[i][0]-val[i][2]]+val[i][0]*w[i][0]+val[i][2]*w[i][2]);
}
if(j-val[i][0]-val[i][1]-val[i][2]>=0)//主件+附件1+附件2
{
dp[i][j]=max(dp[i][j],dp[i-1][j-val[i][0]-val[i][1]-val[i][2]]+val[i][0]*w[i][0]+val[i][1]*w[i][1]+val[i][2]*w[i][2]);
}
}
else
{
dp[i][j]=dp[i-1][j];//什么都装不了
}
}
}
cout<<dp[m][n]<<endl;
return 0;
}