文章目录
一、技术背景
多抽样率滤波器组,完全重建QMF滤波器组优点是在对信号进行抽取后,可以根据每个子带的不同特征分别进行处理,而插值和合成环节又能消除信号失真的各种因素,因此被广泛用于语音处理、图像处理、国防通信和小波变换中。目前,完全重建QMF滤波器组的设计有多种优化设计方法,如特征值法、最小二乘法[1]、遗传法、多项式分解法[2]等等,都将信号失真降到了很小的范围,但是这些方法计算复杂、参数不容易确定、程序编写较难。而利用matlab的信号处理功能和运算功能,可以快速、有效的设计完全重建QMF滤波器组,且具有较高的精度。
二、理论分析
三、重建信号的误差
对于一个给定的信号,经过分析滤波器后,再进行抽取、编码、传输,可以通过零值内插、综合滤波器滤波、求和运算得到恢复和重建。但是重建后的信号并不能与原始信号完全相同,两者之间存在着误差,主要包括:
(1)混叠失真。由抽取和内插产生的混叠和镜像带来的误差,导致分析滤波器组和综合滤波器组的频带不能完全分开;
(2)幅度失真。由于分析和综合滤波器组的频带在通带内不是全通函数,其幅频特性波纹产生的误差;
(3)相位失真。由滤波器相频特性的非线性所产生的误差;
(4)量化失真。由编、解码产生的误差,与量化噪声相似,这类误差无法完全消除,只能设法减小。
在完全重建QMFB过程中,希望设计的滤波器通带尽量平、过渡带尽量窄,且阻带尽可能快速衰减。
四、基于matlab完全重建QMFB的方法
函数详解:
1.function [h0,h1,g0,g1] = firpr2chfb(N,fp,varargin)
ps:直接百度就只搜出来师哥师姐的作业。没有搜到函数介绍,于是在matlab里用help指令查看了。
N是4个滤波器的顺序,必须为奇数。fp是低通滤波器H0和G0的通带边缘,要小于0.5。H1和G1是高通滤波器的通带边缘,为1-fp.
function [h0,h1,g0,g1] = firpr2chfb(N,fp,varargin)
%FIRPR2CHFB FIR perfect reconstruction 2 channel filter bank design.
% [H0,H1,G0,G1] = FIRPR2CHFB(N,Fp) designs four FIR filters for the
% analysis (H0 and H1) and synthesis (G0 and G1) sections of a
% two-channel perfect reconstruction filter bank. The design corresponds
% to so-called orthogonal filter banks also known as power-symmetric
% filter banks.
2.[H,w]=freqz(B,A,N)
B和A分别对应离散系统的系统函数H(z)的分子、分母多项式的系数向量;N默认是512
H则包含了离散系统对应区间内N个频率等分点的频率响应,w为N个频率等分点的值
N值的确定:通过仿真获得了完全重建QMFB的最佳系数
选定w=0.45,以不同的输入信号x1(n),x2(n),x3(n) ,改变N的大小求出相应的mse,通过相应的mse比较得到最优的N值。
仿真结果如表1:
N=0.45时, | mse1 (10^{-7}) | mse2 (10^{-7}) | mse3 (10^{-9} ) |
---|---|---|---|
31 | 3.0100 | 9.7629 | 0.83517 |
3 |