[数据压缩]_第12周作业

本文介绍了基于MATLAB的完全重建多抽样率滤波器组方法,重点讨论了重建信号误差的来源和如何优化设计滤波器。通过仿真,确定了最佳的N值为41和w值为0.43,实现了低失真重建效果。
摘要由CSDN通过智能技术生成

一、技术背景

多抽样率滤波器组,完全重建QMF滤波器组优点是在对信号进行抽取后,可以根据每个子带的不同特征分别进行处理而插值和合成环节又能消除信号失真的各种因素,因此被广泛用于语音处理、图像处理、国防通信和小波变换中。目前,完全重建QMF滤波器组的设计有多种优化设计方法,如特征值法、最小二乘法[1]、遗传法、多项式分解法[2]等等,都将信号失真降到了很小的范围,但是这些方法计算复杂、参数不容易确定、程序编写较难。而利用matlab的信号处理功能和运算功能,可以快速、有效的设计完全重建QMF滤波器组,且具有较高的精度。

二、理论分析

在这里插入图片描述

三、重建信号的误差

对于一个给定的信号,经过分析滤波器后,再进行抽取、编码、传输,可以通过零值内插、综合滤波器滤波、求和运算得到恢复和重建。但是重建后的信号并不能与原始信号完全相同,两者之间存在着误差,主要包括:

(1)混叠失真。由抽取和内插产生的混叠和镜像带来的误差,导致分析滤波器组和综合滤波器组的频带不能完全分开;

(2)幅度失真。由于分析和综合滤波器组的频带在通带内不是全通函数,其幅频特性波纹产生的误差;

(3)相位失真。由滤波器相频特性的非线性所产生的误差;

(4)量化失真。由编、解码产生的误差,与量化噪声相似,这类误差无法完全消除,只能设法减小。

在完全重建QMFB过程中,希望设计的滤波器通带尽量平、过渡带尽量窄,且阻带尽可能快速衰减。

四、基于matlab完全重建QMFB的方法

函数详解:

1.function [h0,h1,g0,g1] = firpr2chfb(N,fp,varargin)

ps:直接百度就只搜出来师哥师姐的作业。没有搜到函数介绍,于是在matlab里用help指令查看了。

N是4个滤波器的顺序,必须为奇数。fp是低通滤波器H0和G0的通带边缘,要小于0.5。H1和G1是高通滤波器的通带边缘,为1-fp.

function [h0,h1,g0,g1] = firpr2chfb(N,fp,varargin)
%FIRPR2CHFB   FIR perfect reconstruction 2 channel filter bank design.
%   [H0,H1,G0,G1] = FIRPR2CHFB(N,Fp) designs four FIR filters for the
%   analysis (H0 and H1) and synthesis (G0 and G1) sections of a
%   two-channel perfect reconstruction filter bank. The design corresponds
%   to so-called orthogonal filter banks also known as power-symmetric
%   filter banks.

2.[H,w]=freqz(B,A,N)

B和A分别对应离散系统的系统函数H(z)的分子、分母多项式的系数向量;N默认是512

H则包含了离散系统对应区间内N个频率等分点的频率响应,w为N个频率等分点的值

N值的确定:通过仿真获得了完全重建QMFB的最佳系数

选定w=0.45,以不同的输入信号x1(n),x2(n),x3(n) ,改变N的大小求出相应的mse,通过相应的mse比较得到最优的N值。

在这里插入图片描述

仿真结果如表1:

N=0.45时, mse1 (10^{-7}) mse2 (10^{-7}) mse3 (10^{-9} )
31 3.0100 9.7629 0.83517
3
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值