题目传送门:【POJ 2976】
题目大意:你需要参加
n
项考试,每场考试的总分为
例如你参加了 3 场考试,得分与总分分别为 5/5,0/1,2/6,此时你的最终得分为 7/12 * 100
≈
58;而当你翘掉最后一场考试时,你的最终得分将变为 5/6 * 100
≈
83。小数点后的数四舍五入。
题目分析:
比较经典的二分答案的题。二分的过程需要思考。
这道题乍一看以为是裸的贪心,结果敲完一遍后才发现,0/1 会直接被 2/6 给刷掉,因此不能直接用贪心来判断。
正确的判断方式应该是这样的。
举个栗子,osu! 的准确度。当你的准度高达 99.50%的时候,此时你肯定会希望多打出 300,并且会尽量避免打出 100 或 50。而当你的准度只有 25.00%时(虽然这时候你已经差不多死了),打出 300 当然很好,但你打出 100 时也不亏,只有打出 50 的时候才会掉准度。
这道题也很类似。令 p 为得分率(即:得分 / 总分),那么 p 的范围一定在 0 - 1 之间。此时我们就可以对其进行二分操作。
设这场考试的得分为 a[i],总分为 b[i],取当前上下界的中间值 mid 作为二分过程中的得分率。如果我们要看这道题会不会影响整体的得分率,我们可以用 a[i] - mid * b[i] 来判断它造成的影响大小,如果大于 0 则说明这场考试的得分率大于 mid,如果小于 0 则说明得分率小于 mid(就好比一连串300中间来了好几个100),并且用 t[i] 将其暂存下来。
我们将 t[i] 进行升序排序,于是根据贪心的思想可知,前面 k 场考试会影响准确度,必须刷掉。我们最后统计 t[i] 中所有项的和,如果大于等于 0 则说明当前的 mid 会小于最终应得到的 mid 值,往上继续二分,否则就说明 mid 太大,需要往下面二分搜索。
下面附上代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int MX=1005;
const double ESP=1e-6;
struct Grade{
double a,b;
};
Grade gd[MX];
int n,k;
double t[MX];
bool comp(double m){
double sum=0;
for (int i=1;i<=n;i++){
t[i] = gd[i].a - m*gd[i].b;
}
sort(t+1,t+n+1);
for (int i=k+1;i<=n;i++){
sum+=t[i];
}
return sum >= 0;
}
int main(){
while (cin>>n>>k){
double low = 0,high = 1,mid;
if (n == 0 && k == 0) break;
for (int i=1;i<=n;i++){
cin>>gd[i].a;
}
for (int i=1;i<=n;i++){
cin>>gd[i].b;
}
mid=(low + high) / 2;
while (high - low > ESP){
mid = (low + high) / 2;
if ( comp(mid) ) low = mid;
else high = mid;
}
printf("%0.0lf\n",mid*100);
}
return 0;
}