Python爬虫初体验(2):多线程的应用及爬取中的实际问题

本文讲述了作者在Python爬虫实践中遇到的效率问题,通过引入多线程库threading提高了下载速度。在实现过程中,作者遇到了线程分配、异常处理和图片链接错误等问题,详细描述了解决这些问题的过程,包括对ReadTimeout和ConnectionError的处理,以及如何应对404和用户交互式的漫画页面。尽管遇到挑战,但最终成功下载了大部分图片。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前情提要:Python爬虫初体验(1):利用requests和bs4提取网站漫画

前几天有些放松懈怠,并没有做多少事情……这几天要加油了!7月的计划要抓紧时间完成!

今天疯狂肝这个程序,算是暑假睡得最晚的一天了……(不过程序仍然有问题)


好的废话不多说,进入正题

总结了下上次的爬虫体验。虽然能保证稳定下载,但是下载 50 张XKCD漫画花费的时间达到了将近 10 分钟,效率比较低。

所以这次学习了多线程,以求达到较快下载完全部 2000 余张漫画的目标。(另外配合 V 姓网络加速工具保证连接外网的质量)

额外加入了 threading 模块来实现多线程。

另外,改进了一下代码风格,变量名称


threading 库中,Thread() 是进行多线程操作的关键。

在这里简单的应用:threading.Thread(target=xxxx, args=(), kwargs=None)

(target 指向函数本身,args 为向目标函数传递的常规参数,kwargs 为传递的关键字参数)

然后!

一样的方法去弄就可以了……

……

其实并不行。必须要把提取—解析—下载—存储的全过程函数化,这样才能实现多线程。

于是索性把所有过程都写成了函数里……看起来虽然增加了代码量,但是用起来就会很方便。

这里出现了一个问题:我开了 5 个线程,假如图片一共有 2000 张还行,有 2003 张怎么办?

emm,前 4 个线程下载 401 张图,第 5 个下载 399 张图就可以啦!

但是,如果前 400 张图比较小,第 401-8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值