[BZOJ 4034][HAOI 2015] 树上操作 树链剖分+DFS序

题目传送门:【BZOJ 4034】


题目大意:有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。


题目分析:
(经实验证明,本人的查错能力越发低下,又花了三个小时来做这道题)

由题,结合树链剖分型题目的性质,容易看出,这是一道树链剖分的裸题。
我们先对这棵树进行树链剖分,然后在这之上建立一棵线段树。
对于操作 1,直接找到 x 在线段树中的位置(单点修改);
对于操作 2,根据 DFS 序的性质,可以发现,一个点及其子树的所有点在线段树中均为连续的一部分,所以直接根据点 x 的 DFS 序进行区间修改即可;
对于操作 3,由于 LCA( x , 1 ) == 1,所以先对 x 点从轻边边跳 father 边查询之后,再查询它到根 1 的权值,最后统计并求和即可。
所以这就是一道普通的树链剖分模板题。

下面附上代码:

  1. #include<cstdio>  
  2. #include<algorithm>  
  3. #define ls (nd<<1)  
  4. #define rs (nd<<1|1)  
  5. #define Root 1  
  6. typedef long long LL;  
  7. const int MX=200005;  
  8. const int INF=1000005;                      //初始化懒标记时的值   
  9.   
  10. struct Edge{  
  11.     int to,next;  
  12. }edge[MX*2];  
  13. int n,m,now=0,_index=0, L , R , pos ,line[MX],head[MX],seq[MX];  
  14. int depth[MX],size[MX],fa[MX],son[MX],top[MX],in[MX],out[MX];  
  15. struct SegTree{  
  16.     LL sum,flag;  
  17. }seg[MX*4];  
  18.   
  19. inline void adde(int u,int v){  
  20.     edge[++now].to=v;  
  21.     edge[now].next=head[u];  
  22.     head[u]=now;  
  23. }  
  24. void dfs1(int u){  
  25.     size[u]=1;  
  26.     for (int i=head[u];i;i=edge[i].next){  
  27.         int v=edge[i].to;  
  28.         if (fa[u]==v) continue;  
  29.         fa[v]=u;  
  30.         depth[v]=depth[u]+1;  
  31.         dfs1(v);  
  32.         if (size[v]>size[son[u]]) son[u]=v;  
  33.         size[u]+=size[v];  
  34.     }  
  35. }  
  36. void dfs2(int u,int tp){  
  37.     top[u]=tp;  
  38.     seq[++_index]=u;  
  39.     in[u]=_index;  
  40.     if (son[u]) dfs2(son[u],tp);  
  41.     for (int i=head[u];i;i=edge[i].next){  
  42.         int v=edge[i].to;  
  43.         if (fa[u]==v || son[u]==v) continue;  
  44.         dfs2(v,v);  
  45.     }  
  46.     out[u]=_index;  
  47. }  
  48. /*————————–Dividing Line————————–*/  
  49. void build(int nd,int lf,int rt){  
  50.     if (lf==rt) seg[nd].sum=line[seq[lf]];  
  51.     else {  
  52.         int mid=(lf+rt)>>1;  
  53.         build(ls,lf,mid);  
  54.         build(rs,mid+1,rt);  
  55.         seg[nd].sum=seg[ls].sum+seg[rs].sum;  
  56.     }  
  57. }  
  58. void pushdown(int nd,int lf,int rt){  
  59.     if (seg[nd].flag && lf!=rt){  
  60.         int mid=(lf+rt)>>1;  
  61.         seg[ls].flag+=seg[nd].flag;  
  62.         seg[rs].flag+=seg[nd].flag;  
  63.         seg[ls].sum+=seg[nd].flag*(mid-lf+1);  
  64.         seg[rs].sum+=seg[nd].flag*(rt-mid);  
  65.         seg[nd].flag=0;  
  66.     }  
  67. }  
  68. void add(int nd,int lf,int rt,int val){//option. 1  
  69.     pushdown(nd,lf,rt);  
  70.     if (lf==rt){  
  71.         seg[nd].sum+=val;  
  72.         return;  
  73.     }  
  74.     int mid=(lf+rt)>>1;  
  75.     if (pos<=mid) add(ls,lf,mid,val);  
  76.     else add(rs,mid+1,rt,val);  
  77.     seg[nd].sum=seg[ls].sum+seg[rs].sum;  
  78. }  
  79. void add_tree(int nd,int lf,int rt,int val){//option. 2  
  80.     if (L>R) return;  
  81.     pushdown(nd,lf,rt);  
  82.     if (L<=lf && rt<=R){  
  83.         seg[nd].sum+=(LL)val*(rt-lf+1);  
  84.         seg[nd].flag+=(LL)val;  
  85.         return;  
  86.     }  
  87.     int mid=(lf+rt)>>1;  
  88.     if (L<=mid) add_tree(ls,lf,mid,val);  
  89.     if (R>mid) add_tree(rs,mid+1,rt,val);  
  90.     seg[nd].sum=seg[ls].sum+seg[rs].sum;  
  91. }  
  92. LL query(int nd,int lf,int rt){//option. 3  
  93.     if (L>R) return 0;  
  94.     pushdown(nd,lf,rt);  
  95.     if (L<=lf && rt<=R)  
  96.         return seg[nd].sum;  
  97.       
  98.     int mid=(lf+rt)>>1;  LL ans=0;  
  99.     if (L<=mid) ans+=query(ls,lf,mid);  
  100.     if (R>mid) ans+=query(rs,mid+1,rt);  
  101.     return ans;  
  102. }  
  103. LL query(int u,int v){  
  104.     LL ans=0;  
  105.     while (top[u]!=top[v]){  
  106.         if (depth[top[u]]<depth[top[v]]) std::swap(u,v);  
  107.         L=in[top[u]],R=in[u];  
  108.         ans+=query(Root,1,n);  
  109.         u=fa[top[u]];  
  110.     }  
  111.     if (depth[u]<depth[v]) std::swap(u,v);  
  112.     L=in[v],R=in[u];  
  113.     ans+=query(Root,1,n);  
  114.     return ans;  
  115. }  
  116. /*————————–Dividing Line————————–*/  
  117. int main(){  
  118.     int a,b,opt;  
  119.     scanf(”%d%d”,&n,&m);  
  120.     for (int i=1;i<=n;i++)  
  121.         scanf(”%d”,&line[i]);  
  122.     for (int i=1;i<n;i++){  
  123.         scanf(”%d%d”,&a,&b);  
  124.         adde(a,b),adde(b,a);  
  125.     }  
  126.     depth[1]=1,fa[1]=1;  
  127.     dfs1(1);  
  128.     dfs2(1,1);  
  129.     build(Root,1,n);  
  130.     for (int i=1;i<=m;i++){  
  131.         scanf(”%d”,&opt);  
  132.         if (opt==1){  
  133.             scanf(”%d%d”,&a,&b);  
  134.             pos=in[a];  add(Root,1,n,b);  
  135.         }  
  136.         if (opt==2){  
  137.             scanf(”%d%d”,&a,&b);  
  138.             L=in[a],R=out[a];  add_tree(Root,1,n,b);  
  139.         }  
  140.         if (opt==3){  
  141.             scanf(”%d”,&a);  
  142.             printf(”%lld\n”,query(a,1));  
  143.         }  
  144.     }  
  145.     return 0;  
  146. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值