最近公共祖先(LCA) 倍增优化

最近公共祖先(LCA) 倍增优化

定义

最近公共祖先(Lowest Common Ancestor):两个节点的公共祖先节点中离根最远(即深度最深)的节点。

性质

  • u u u v v v的祖先,当且仅当 L C A ( u , v ) = u LCA(u,v)=u LCA(u,v)=u
  • 如果 u u u不为 v v v的祖先并且 v v v不为 u u u的祖先,那么 u , v u,v u,v分别处于 L C A ( u , v ) LCA(u,v) LCA(u,v)的两棵不同子树中
  • A , B A,B A,B分别为两个点集,有 L C A ( A ∪ B ) = L C A ( L C A ( A ) , L C A ( B ) ) LCA(A \cup B) = LCA(LCA(A),LCA(B)) LCA(AB)=LCA(LCA(A),LCA(B))
  • L C A ( u , v ) LCA(u,v) LCA(u,v)一定在 u , v u,v u,v的最短路径上
  • d e p dep dep为深度,dis为最短距离,有 d i s ( u , v ) = d e p ( u ) + d e p ( v ) − 2 ∗ d e p ( L C A ( u , v ) ) dis(u,v) = dep(u) + dep(v) - 2*dep(LCA(u,v)) dis(u,v)=dep(u)+dep(v)2dep(LCA(u,v))

倍增算法实现

思路:
首先约定我们有n个节点,m次查询。
1. 我们首先预处理求出每个节点的第2的幂次方个祖先,并存放在 f [ i ] [ j ] f[i][j] f[i][j]中,意为编号为i的节点的第 2 j 2^j 2j个祖先节点的编号。一般求到 2 19 2^{19} 219个祖先,也就是524288,即可满足大部分题目的数据规模。这一步的复杂度是 O ( n l o g   n ) O(nlog \space n) O(nlog n)的。
2. 预处理完成后,即可接受查询。不妨设接受的是 u , v ( d e p ( u ) ≥ d e p ( v ) ) u,v(dep(u) \geq dep(v)) u,v(dep(u)dep(v))的最近公共祖先的查询。现在我们需要用 f f f数组来计算出答案。具体步骤如下:

  • 首先将求 u , v u,v u,v的LCA转换成求 u u u v v v同深度的祖先 u ′ u^{\prime} u v v v的LCA
  • 如果 u ′ = v u^{\prime} = v u=v,那么 L C A ( u , v ) = v LCA(u,v) = v LCA(u,v)=v
  • 否则让 u ′ u^{\prime} u v v v一起向上, 没错,是。跳 2 i 2^i 2i步, i i i递减, i i i的初值取决于数据规模。如果 u ′ u^{\prime} u v v v的第 2 i 2^{i} 2i祖先相同,那就继续往下跳。如果不同就往上跳。直到找到一个临界值,一个 u ′ u^{\prime} u v v v不同但是 u ′ u^{\prime} u v v v上数第一个祖先相同的临界点。
  • 单次查询是 O ( l o g   n ) O(log\space n) O(log n)的,总共m次查询,也就是 O ( m l o g   n ) O(mlog\space n) O(mlog n)

整个算法的时间复杂度为 O ( n l o g   n + m l o g   n ) O(nlog\space n + mlog\space n) O(nlog n+mlog n)
如果没有完全理解,那么直接看代码

代码实现

该代码解决的是洛谷P3379,可以前往该页面看输入输出格式。

#include <algorithm>
#include <vector>
#include <iostream>
#include <cmath>
using namespace std;
const int N = 5e5 + 100;
vector<int> G[N];
int n, m, s;
void add(int u, int v)
{
    G[u].push_back(v);
    G[v].push_back(u);
}
//以上是存图 
bool vis[N];
double limit; //限制i之增长,实际值为以2为底的log n,其中n为节点个数 
int f[N][20], hight[N]; //f[i][j]表示编号为i的节点的第2^i个祖先,hight为高度数组 
void dfs(int s, int h = 0)
{
    hight[s] = h;
    for(int i = 1; i <= limit; i++)
    {
        if((1<<i) > h) break; //高度小于2^i时,显然f[s][i]是没有意义的,直接跳过 
        f[s][i] = f[f[s][i-1]][i-1]; //这个状态转移方程的意义是s的第2^i个祖先 = (s的第2^(i-1)个祖先)的 第2^(i-1)个祖先。 
		//dp, 倍增优化之基本。 
    }

    for(auto p : G[s])
    {
        if(vis[p]) continue;
        vis[p] = 1;
        f[p][0] = s; //dp的边界条件 
        dfs(p, h+1);
    }
}

int query(int a, int b)
{
    if(hight[a] != hight[b]) //先尝试将a,b变为同一高度,具体做法是将较深的一个提升到相同高度 
    {
        if(hight[a] < hight[b]) swap(a,b); //保证a比b深 
        int d = hight[a] - hight[b];//d即为a,b高度差 
        for(int i = 0; i < 20; i++) 
        if(d & (1<<i)) a = f[a][i]; //这么做可以让a变为a的第i个祖先 
    }
    if(a == b) return a;//此时a,b同深度,如果a=b,万事大吉 
    for(int i = 19; i >= 0; i--) //否则我们从上往下走,这过程中保持ab同深度,试图寻找一个临界点——ab不相同,但ab的上数第1个祖先相同 
    {
        if(hight[a] < (1<<i)) continue; //高度小于2^i,无意义,继续 
        if(f[a][i] == f[b][i]) continue;//此时是公共祖先,但不一定是LCA,继续 
        a = f[a][i]; b = f[b][i]; 
		//此时表示ab的第2^(i+1)个祖先相同, 但2^i个祖先不相同,也就是说临界点藏在[ 2^i,2^(i-1) )中。
		//我们便将ab上移,此时如果i为0那么便是我们要找的临界点,否则不为0的i为继续为我们缩小范围。 
    }
    return f[a][0];//临界点上数第1个祖先结点便是答案,f[b][0]也可以 
}

int main()
{
    cin >> n >> m >> s; //n为节点数,m为询问数,s为根节点 
    limit = log(n);
    int u, v;
    for(int i = 1; i < n; i++) //n-1条边 
    {
        cin >> u >> v;
        add(u, v);
    }
    vis[s] = 1;
    dfs(s); //预处理 
    for(int i = 0; i < m; i++) //m次询问 
    {
        cin >> u >> v;
      	cout << "ans = " << query(u, v) << endl;
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值