倍增法求最近公共祖先(LCA)

最近公共祖先的理解:

在一颗有根树中,给定两个节点,找到他们两个最近的公共祖先(为保证统一性,结点本身也为其祖先)

解决方法:

一、向上标记法       O(n)

从一个点向他的根节点走,经过的所有点都标记一下,再走第二个点,如果走到被标记的点即位二者的最近公共祖先

二、倍增法

预处理 O(nlogn)

01
f[i,j]数组表示:节点i向上跳2^j步到达的点
if(j==0)    f[i,j]=i的父节点
if(j>0)     f[i,j]=f[f[i,j-1],j-1]
02
depth[i]数组表示:节点i的层数,即到根节点的距离+1

查询 O(logn)

【1】 让两个点跳到同一层

【2】 让两个点同时跳,直到跳到两个点的最近公共祖先的下一层

例题:祖孙询问

给定一棵包含 n个节点的有根无向树,节点编号互不相同,但不一定是 1∼n。有 m

个询问,每个询问给出了一对节点的编号 x 和 y,询问 x 与 y的祖孙关系。

输入格式

输入第一行包括一个整数 表示节点个数;

接下来 n行每行一对整数 a 和 b,表示 a 和 b 之间有一条无向边。如果 b 是 −1,那么 a

就是树的根;

第 n+2行是一个整数 m表示询问个数;

接下来 m行,每行两个不同的正整数 x 和 y,表示一个询问。

输出格式

对于每一个询问,若 x是 y 的祖先则输出 1,若 y 是 x 的祖先则输出 2,否则输出 0

数据范围

1≤n,m≤4×104
1≤每个节点的编号≤4×104

输入样例:

10
234 -1
12 234
13 234
14 234
15 234
16 234
17 234
18 234
19 234
233 19
5
234 233
233 12
233 13
233 15
233 19

输出样例:

1
0
0
0
2

AC_code

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;
const int N=4e4+10; 

int n,m;
int h[N],e[2*N],ne[2*N],idx;
int f[N][16];//i号结点向上跳2^j步到达的结点编号
int depth[N];//i号结点的层数

void add(int a,int b)
{
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void bfs(int root)
{
    memset(depth,0x3f3f3f,sizeof depth);
    
    depth[0]=0,depth[root]=1;
    // 哨兵depth[0] = 0: 如果从i开始跳2^j步会跳过根节点 
    // fa[fa[j][k-1]][k-1] = 0
    // 那么fa[i][j] = 0 depth[fa[i][j]] = depth[0] = 0
    
    queue<int> q;
    q.push(root);
    while(!q.empty())
    {
        int t=q.front();
        q.pop();
        for(int i=h[t];~i;i=ne[i])
        {
            int j=e[i];
            if(depth[j]>depth[t]+1)
            {
                depth[j]=depth[t]+1;
                q.push(j);
                f[j][0]=t;
                
                for(int k=1;k<=15;k++)
                {
                    f[j][k]=f[f[j][k-1]][k-1];
                }
            }
        }
    }
}

int lca(int a,int b)
{
    if(depth[a]<depth[b])   swap(a,b);
    
    //让两个点跳到同一层
    for(int k=15;k>=0;k--)
    {
        if(depth[f[a][k]]>=depth[b])
            a=f[a][k];
    }
    //让两个点同时跳,直到跳到两个点的最近公共祖先的下一层
    if(a==b) return a;
    for(int k=15;k>=0;k--)
    {
        if(f[a][k]!=f[b][k])
        {
            a=f[a][k];
            b=f[b][k];
        }
    }
    
    return f[a][0];
}

int main()
{
    cin>>n;
    int root=0;
    memset(h,-1,sizeof h);
    for(int i=1;i<=n;i++)
    {
        int a,b;
        scanf("%d%d",&a,&b);
        if(b==-1)   root=a;
        else 
        {
            add(a,b);
            add(b,a);
        }
    }
    
    bfs(root);//预处理出f[][],depth[]数组
    
    cin>>m;
    while (m -- )
    {
        int a,b;
        scanf("%d%d",&a,&b);
        int q=lca(a,b);
        if(q==a)    cout<<1<<endl;
        else if(q==b)   cout<<2<<endl;
        else cout<<0<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑夜蔓蔓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值