最近公共祖先的理解:
在一颗有根树中,给定两个节点,找到他们两个最近的公共祖先(为保证统一性,结点本身也为其祖先)
解决方法:
一、向上标记法 O(n)
从一个点向他的根节点走,经过的所有点都标记一下,再走第二个点,如果走到被标记的点即位二者的最近公共祖先
二、倍增法
预处理 O(nlogn)
01
f[i,j]数组表示:节点i向上跳2^j步到达的点
if(j==0) f[i,j]=i的父节点
if(j>0) f[i,j]=f[f[i,j-1],j-1]
02
depth[i]数组表示:节点i的层数,即到根节点的距离+1查询 O(logn)
【1】 让两个点跳到同一层
【2】 让两个点同时跳,直到跳到两个点的最近公共祖先的下一层
例题:祖孙询问
给定一棵包含 n个节点的有根无向树,节点编号互不相同,但不一定是 1∼n。有 m
个询问,每个询问给出了一对节点的编号 x 和 y,询问 x 与 y的祖孙关系。
输入格式
输入第一行包括一个整数 表示节点个数;
接下来 n行每行一对整数 a 和 b,表示 a 和 b 之间有一条无向边。如果 b 是 −1,那么 a
就是树的根;
第 n+2行是一个整数 m表示询问个数;
接下来 m行,每行两个不同的正整数 x 和 y,表示一个询问。
输出格式
对于每一个询问,若 x是 y 的祖先则输出 1,若 y 是 x 的祖先则输出 2,否则输出 0
数据范围
1≤n,m≤4×104
1≤每个节点的编号≤4×104
输入样例:
10
234 -1
12 234
13 234
14 234
15 234
16 234
17 234
18 234
19 234
233 19
5
234 233
233 12
233 13
233 15
233 19
输出样例:
1
0
0
0
2
AC_code
#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N=4e4+10;
int n,m;
int h[N],e[2*N],ne[2*N],idx;
int f[N][16];//i号结点向上跳2^j步到达的结点编号
int depth[N];//i号结点的层数
void add(int a,int b)
{
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void bfs(int root)
{
memset(depth,0x3f3f3f,sizeof depth);
depth[0]=0,depth[root]=1;
// 哨兵depth[0] = 0: 如果从i开始跳2^j步会跳过根节点
// fa[fa[j][k-1]][k-1] = 0
// 那么fa[i][j] = 0 depth[fa[i][j]] = depth[0] = 0
queue<int> q;
q.push(root);
while(!q.empty())
{
int t=q.front();
q.pop();
for(int i=h[t];~i;i=ne[i])
{
int j=e[i];
if(depth[j]>depth[t]+1)
{
depth[j]=depth[t]+1;
q.push(j);
f[j][0]=t;
for(int k=1;k<=15;k++)
{
f[j][k]=f[f[j][k-1]][k-1];
}
}
}
}
}
int lca(int a,int b)
{
if(depth[a]<depth[b]) swap(a,b);
//让两个点跳到同一层
for(int k=15;k>=0;k--)
{
if(depth[f[a][k]]>=depth[b])
a=f[a][k];
}
//让两个点同时跳,直到跳到两个点的最近公共祖先的下一层
if(a==b) return a;
for(int k=15;k>=0;k--)
{
if(f[a][k]!=f[b][k])
{
a=f[a][k];
b=f[b][k];
}
}
return f[a][0];
}
int main()
{
cin>>n;
int root=0;
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
if(b==-1) root=a;
else
{
add(a,b);
add(b,a);
}
}
bfs(root);//预处理出f[][],depth[]数组
cin>>m;
while (m -- )
{
int a,b;
scanf("%d%d",&a,&b);
int q=lca(a,b);
if(q==a) cout<<1<<endl;
else if(q==b) cout<<2<<endl;
else cout<<0<<endl;
}
return 0;
}