扩展欧几里得:
1.给任意a,b,c,,,求ax+by=c,这里的c必须是gcd(x,y)的整数倍才会又整数解,否则没有整数解.(这里的a,b,c可以是个小式子,可能为负数)
2.利用扩展欧几里得求ax+by=gcd(a,b)
(这里的a和b可以是一个小式子,可能为负数)
可以得到一组(x0,y0)解,那么就可以得到所有的解
x=x0+k(b/gcd(a,b))
y=y0-k(a/gcd(a,b)) 这里的k是任意正整数。
(若是ax-by,那么这里的y=y0+k(a/gcd(a,b))
3.一般用来求ax≡p( mod b )等价于ax+by=p,如果p不是gcd(a,b)的倍数,那么无解,否则,求出ax+by=gcd(a,b)然后两边同时乘以p/gcd(a,b)即可。(这里的a,b,p可以是个小式子,可能为负数)
题目:https://www.acwing.com/problem/content/205/
题:求关于x的同余方程 ax ≡ 1(mod b) 的最小正整数解。
输入只有一行,包含两个正整数a,b,用一个空格隔开。
输出只有一行,包含一个正整数x,表示最小正整数解。
输入数据保证一定有解。
2≤a,b≤2e9
题解:
这里 ax ≡ 1(mod b)即为,ax+by=1,,又因为,他说输入数据一定有解,所以gcd(a,b)=1; 即ax+by=1直接用扩展欧几里得求解就行,然后利用x=x0+k(b/gcd(a,b))求得最小的x,(这里的gcd(a,b)是1,所以公式简便为x=x0+b)
代码:
#include <iostream>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+9;
int exgcd(int a,int b,int &x,int &y) //扩张欧几里得模板
{
if(!b)
{
x=1,y=0;
return a;
}
int d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main()
{
int a,b;
cin>>a>>b;
int x,y;
exgcd(a,b,x,y);
//这里的x,y就为公式的一个特殊解即x0,y0
//求x最小正整数,让x对b取摸然后再加上一个b再取摸就能避免负数情况了
cout<<(x%b+b)%b<<endl;
return 0;
}