同余方程--acwing( 扩展欧几里得 )

该博客介绍了如何运用扩展欧几里得算法解决形如ax≡1 (mod b)的同余方程,确保输入数据有解的情况下,通过算法找到最小正整数解。输入两个正整数a和b,通过exgcd函数计算x和y的初始解,然后调整x以找到满足条件的最小正整数x。最终,通过(x%b+b)%b计算并输出最小正整数解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

扩展欧几里得:
1.给任意a,b,c,,,求ax+by=c,这里的c必须是gcd(x,y)的整数倍才会又整数解,否则没有整数解.(这里的a,b,c可以是个小式子,可能为负数)

2.利用扩展欧几里得求ax+by=gcd(a,b)
(这里的a和b可以是一个小式子,可能为负数)
可以得到一组(x0,y0)解,那么就可以得到所有的解
x=x0+k(b/gcd(a,b))
y=y0-k(a/gcd(a,b)) 这里的k是任意正整数。
(若是ax-by,那么这里的y=y0+k(a/gcd(a,b))

3.一般用来求ax≡p( mod b )等价于ax+by=p,如果p不是gcd(a,b)的倍数,那么无解,否则,求出ax+by=gcd(a,b)然后两边同时乘以p/gcd(a,b)即可。(这里的a,b,p可以是个小式子,可能为负数)

题目:https://www.acwing.com/problem/content/205/

题:求关于x的同余方程 ax ≡ 1(mod b) 的最小正整数解。

输入只有一行,包含两个正整数a,b,用一个空格隔开。

输出只有一行,包含一个正整数x,表示最小正整数解。
输入数据保证一定有解。
2≤a,b≤2e9

题解:
这里 ax ≡ 1(mod b)即为,ax+by=1,,又因为,他说输入数据一定有解,所以gcd(a,b)=1; 即ax+by=1直接用扩展欧几里得求解就行,然后利用x=x0+k(b/gcd(a,b))求得最小的x,(这里的gcd(a,b)是1,所以公式简便为x=x0+b)

代码:

#include <iostream>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+9;
int exgcd(int a,int b,int &x,int &y)   //扩张欧几里得模板
{
    if(!b)
    {
        x=1,y=0;
        return a;
    }
    int d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}

int main()
{
    int a,b;
    cin>>a>>b;
    int x,y;
    exgcd(a,b,x,y);
    //这里的x,y就为公式的一个特殊解即x0,y0
    //求x最小正整数,让x对b取摸然后再加上一个b再取摸就能避免负数情况了
    cout<<(x%b+b)%b<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值