Build Basic GANs week4

条件生成与可控生成
本文探讨了条件生成和可控生成的区别及应用场景,解释了如何在生成对抗网络中加入类别信息来控制生成样本,并讨论了特征解耦的重要性。

How does the generator learn what class to generate?
The discriminator is checking if an image looks real or fake based on (conditioned on) a certain class.

Correct! The discriminator also receives the class label and will classify the images based on if they look like real images from that
specific class or not.

How is adding the class information different for the discriminator and generator, and why?
For the discriminator, the class information is appended as a channel or some other method, whereas for the generator, the class is encoded by appending a one-hot vector to the noise to form a long vector input.

Correct! Both the discriminator and generator receive the class information appended to their traditional inputs for conditional
generation.

What is a key difference between controllable generation and conditional generation?
Controllable generation is done after training by modifying the z-vectors passed to the generator while conditional generation is done during training and requires a labelled dataset.

Correct! While conditional generation leverages labels during training, controllable generation controls what features you want in the output examples after the model has been trained…

How are controllable generation and interpolation similar?
They both change features by adapting values of the z-vector.

Correct! Both are done by manipulating the noise vector z.

When does controllable generation commonly fail?
When features strongly correlate with each other and z-values don’t correspond to clear mappings on their images.

Correct! When the z-space is entangled, movement in the different directions has an effect on multiple features simultaneously in the
output. This makes it difficult to control a single feature without
modifying others.

How can you use a classifier for controllable generation?
You can calculate the gradient of the z-vectors along certain features through the classifier to find the direction to move the z-vectors.

Correct! Pre-trained classifiers can be used to find directions in the z-space associated with features in the output of GANs. Remember
that to find those directions, you need to modify the noise vectors
without changing the generator.

What is the purpose of disentangling models?
To correspond values in a z-vector to meaningful features.

Correct! In a disentangled z-space, specific indices on the noise vector correspond to a singular feature in the output.

在这里插入图片描述

内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载与高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论与实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值