Manning.Algorithms.and.Data.Structures.for.Massive.Datasets 摘要

本文深入探讨了适用于大规模数据集的算法和数据结构,包括哈希算法,如一致性哈希和布隆过滤器,以及用于频率估算的CM-sketch和基数估算的HyperLogLog。这些技术广泛应用于分布式系统、大数据分析和数据流处理,提供高效的空间和性能优化解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二、哈希算法

2.1 章节摘要

  • 哈希表在现代网络、数据库、存储解决方案、文本处理应用程序等系统中是不可替代的。
  • 在哈希表设计时,需要在反应速度和空间占用,简化和针对性优化中作平衡
  • 一致性哈希解决了分布式系统中哈希的问题

2.2 思维导图

三、布隆过滤器

3.1 章节摘要

  •  布隆过滤器已广泛应用于分布式数据库、网络、生物信息学和其他常规散列表太占用空间的领域。
  • 原理:一个位图加上一组哈希
  • 误判率:f=(1-e^{-\frac{nk}{m}})^{k};其中m指位图位数,n指要插入的元素个数,k指哈希数量
  • k的推荐值计算公式:k=\frac{m}{n}ln2
  • 商过滤器基于紧凑的散列表,在功能上等同于布隆过滤器,具有缓存高效的操作,以及删除、合并和动态扩缩容的能力。

3.2 思维导图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值