这是一个区间求和问题,因为Q很大,所以使用前缀和。N不超过100,所以在Q次询问中嵌套一次O(n)的循环是不会超时的。令s[i][j][k]表示第i层中左上角为(1,1),右下角为(j,k)的矩形中所有元素的和。s[i][j][k]=s[i][j-1][k]+s[i][j][k-1]-s[i][j-1][k-1]+a[i][j][k];然后在Q次询问中,枚举层数l~r,计算该层的元素和并累加即可。
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
int n, q;
int a[110][110][110];
LL s[110][110][110];
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= n; k++)
{
cin >> a[i][j][k];
s[i][j][k] = a[i][j][k];
s[i][j][k] += s[i][j - 1][k];
s[i][j][k] += s[i][j][k - 1];
s[i][j][k] -= s[i][j - 1][k - 1];
}
cin >> q;
while (q--)
{
int lx, rx;
int ly, ry;
int lz, rz;
cin >> lx >> rx;
cin >> ly >> ry;
cin >> lz >> rz;
LL ans = 0;
for (int i = lx; i <= rx; i++)
{
ans += s[i][ry][rz];
ans -= s[i][ly - 1][rz];
ans -= s[i][ry][lz - 1];
ans += s[i][ly - 1][lz - 1];
}
cout << ans << endl;
}
return 0;
}