题解:AtCoder Beginner Contest AT_abc373_d ABC373D Hidden Weights(格式美化版)

题目传送门

题目翻译

给你一个 N N N 个点, M M M 条边的有向图,其中边有边权。现在让你给每一个点设置一个点权 a a a,使得对于任意两点 x x x y y y,如果 x x x y y y 有一条边,边权为 w w w,那么需要满足 a y − a x = w a_y-a_x=w ayax=w。现在让你输出一组合法的分配方案,题目保证存在,输出任意一组都行。

思路1(注意拿不到满分)

题目让满足 a y − a x = w a_y-a_x=w ayax=w,不就是要满足 a y − a x ≤ w a_y-a_x \le w ayaxw a x − a y ≤ − w a_x-a_y \le -w axayw 吗?差分约束板子!可以参考 这道题

代码如下:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
typedef long long LL;

int n, m;
LL dis[200010];
int vis[200010];

struct edge
{
	int y, w;
} ;

vector<edge> g[200010];

void add(int x, int y, int w)
{
	g[x].push_back((edge){y, w});
}

void spfa(int s)
{
	queue<int> q;
	memset(dis, 0x3f, sizeof(dis));
	memset(vis, 0, sizeof(vis));
	q.push(s);
	dis[s] = 0;
	vis[s] = 1;
	while (q.size())
	{
		int x = q.front();
		q.pop();
		vis[x] = 0;
		for (int i = 0; i < g[x].size(); i++)
		{
			int y = g[x][i].y;
			int w = g[x][i].w;
			if (dis[y] > dis[x] + w)
			{
				dis[y] = dis[x] + w;
				if (vis[y] == 0)
				{
					q.push(y);
					vis[y] = 1;
				}
			}
		}
	}
}

int main()
{
	cin >> n >> m;
	for (int i = 1; i <= m; i++)
	{
		int x, y, w;
		cin >> x >> y >> w;
		add(x, y, w);
		add(y, x, -w);
	}
	for (int i = 1; i <= n; i++)
		add(0, i, 0);
	spfa(0);
	for (int i = 1; i <= n; i++)
		cout << dis[i] << " ";
	cout << endl;
	return 0;
} 

但是,恭喜你T了一个点!其实这个点貌似是专门用来卡SPFA的,所以说优化就不太现实了,换思路吧。

思路2(正解)

前面的逻辑其实没问题,所以我们不用完全推翻重新写,只是把那个SPFA函数给替换掉了。

  1. 建图代码没有变化,但是意义变了。从 x x x y y y 连一条权值为 w w w 边表示 a y − a x = w a_y-a_x=w ayax=w
    代码:
    add(x, y, w);
    add(y, x, -w);
    
  2. 我们得想方设法替换掉SPFA。于是想到了深搜DFS:
    void dfs(int x, LL d)
    {
    	vis[x] = 1;
    	dis[x] = d;
    	for (int i = 0; i < g[x].size(); i++)
    	{
    		int y = g[x][i].y;
    		int w = g[x][i].w;
    		if (!vis[y]) dfs(y, d + w);
    	}
    }
    
    在这里,我们用 v i s vis vis 数组记录这个点的点权有没有被算过,用 d i s dis dis 来记录点权。

完整代码如下:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
typedef long long LL;

int n, m;
LL dis[200010];
int vis[200010];

struct edge
{
	int y, w;
} ;

vector<edge> g[200010];

void add(int x, int y, int w)
{
	g[x].push_back((edge){y, w});
}

void dfs(int x, LL d)
{
	vis[x] = 1;
	dis[x] = d;
	for (int i = 0; i < g[x].size(); i++)
	{
		int y = g[x][i].y;
		int w = g[x][i].w;
		if (!vis[y]) dfs(y, d + w);
	}
}

void solve()
{
	for (int i = 1; i <= n; i++)
		if (!vis[i]) dfs(i, 0);
}

int main()
{
	scanf("%d %d", &n, &m);
	for (int i = 1; i <= m; i++)
	{
		int x, y, w;
		scanf("%d %d %d", &x, &y, &w);
		add(x, y, w);
		add(y, x, -w);
	}
	solve(); 
	for (int i = 1; i <= n; i++)
		printf("%lld ", dis[i]);
	printf("\n");
	return 0;
} 
AtCoder Beginner Contest 134 是一场 AtCoder 的入门级比赛,以下是每道题的简要题解: A - Dodecagon 题目描述:已知一个正十二边形的边长,求它的面积。 解题思路:正十二边形的内角为 $150^\circ$,因此可以将正十二边形拆分为 12 个等腰三角形,通过三角形面积公式计算面积即可。 B - Golden Apple 题目描述:有 $N$ 个苹果和 $D$ 个盘子,每个盘子最多可以装下 $2D+1$ 个苹果,求最少需要多少个盘子才能装下所有的苹果。 解题思路:每个盘子最多可以装下 $2D+1$ 个苹果,因此可以将苹果平均分配到每个盘子中,可以得到最少需要 $\lceil \frac{N}{2D+1} \rceil$ 个盘子。 C - Exception Handling 题目描述:给定一个长度为 $N$ 的整数序列 $a$,求除了第 $i$ 个数以外的最大值。 解题思路:可以使用两个变量 $m_1$ 和 $m_2$ 分别记录最大值和次大值。遍历整个序列,当当前数不是第 $i$ 个数时,更新最大值和次大值。因此,最后的结果应该是 $m_1$ 或 $m_2$ 中较小的一个。 D - Preparing Boxes 题目描述:有 $N$ 个盒子和 $M$ 个物品,第 $i$ 个盒子可以放入 $a_i$ 个物品,每个物品只能放在一个盒子中。现在需要将所有的物品放入盒子中,每次操作可以将一个盒子内的物品全部取出并分配到其他盒子中,求最少需要多少次操作才能完成任务。 解题思路:首先可以计算出所有盒子中物品的总数 $S$,然后判断是否存在一个盒子的物品数量大于 $\lceil \frac{S}{2} \rceil$,如果存在,则无法完成任务。否则,可以用贪心的思想,每次从物品数量最多的盒子中取出一个物品,放入物品数量最少的盒子中。因为每次操作都会使得物品数量最多的盒子的物品数量减少,而物品数量最少的盒子的物品数量不变或增加,因此这种贪心策略可以保证最少需要的操作次数最小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值