1. 简介
Sqoop:SQL–to–Hadoop
Apache Sqoop是用来实现结构型数据(如关系数据库)和Hadoop之间进行数据迁移的工具。它充分利用了MapReduce的并行特点以批处理的方式加快数据的传输,同时也借助MapReduce实现了容错。
Sqoop支持的数据库:
Database | version | –direct support? | connect string matches |
---|---|---|---|
HSQLDB | 1.8.0+ | No | jdbc:hsqldb:// |
MySQL | 5.0+ | Yes | jdbc:mysql:// |
Oracle | 10.2.0+ | No | jdbc:oracle:// |
PostgreSQL | 8.3+ | Yes (import only) | jdbc:postgresql:// |
2. 架构&原理
将导入或导出命令翻译成 mapreduce 程序来实现。
在 mapreduce 中主要是对 inputformat 和 outputformat 进行定制。
Sqoop工具接收到客户端的shell命令或者Java api命令后,通过Sqoop中的任务翻译器(Task Translator)将命令转换为对应的MapReduce任务,而后将关系型数据库和Hadoop中的数据进行相互转移,进而完成数据的拷贝。
Sqoop import原理
从传统数据库获取元数据信息(schema、table、field、field type),把导入功能转换为只有Map的Mapreduce作业,在mapreduce中有很多map,每个map读一片数据,进而并行的完成数据的拷贝
Sqoop 在 import 时,需要制定 split-by 参数。
Sqoop 根据不同的 split-by参数值 来进行切分, 然后将切分出来的区域分配到不同 map 中。每个map中再处理数据库中获取的一行一行的值,写入到 HDFS 中。同时split-by 根据不同的参数类型有不同的切分方法,如比较简单的int型,Sqoop会取最大和最小split-by字段值,然后根据传入的 num-mappers来确定划分几个区域。
Sqoop export 原理
获取导出表的schema、meta信息,和Hadoop中的字段match;多个map only作业同时运行,完成hdfs中数据导出到关系型数据库中
介绍Hadoop业务的开发流程以及Sqoop在业务当中的实际地位
在实际的业务当中,我们首先对原始数据集通过MapReduce进行数据清洗,然后将清洗后的数据存入到Hbase数据库中,而后通过数据仓库Hive对Hbase中的数据进行统计与分析,分析之后将分析结果存入到Hive表中,然后通过Sqoop这个工具将我们的数据挖掘结果导入到MySql数据库中,最后通过Web将结果展示给客户。
3. Sqoop安装
安装 Sqoop 的前提是已经具备 Java 和 Hadoop 的环境。
3.1 下载并解压
- 下载地址:http://mirrors.hust.edu.cn/apache/sqoop/1.4.6/
- 上传安装包 sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 到虚拟机中
- 解压 sqoop 安装包到指定目录,如:
$ tar -zxf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz -C /opt/module/
3.2 修改配置文件
Sqoop 的配置文件与大多数大数据框架类似,在 sqoop 根目录下的 conf 目录中。
- 重命名配置文件
$ mv sqoop-env-template.sh sqoop-env.sh - 修改配置文件
sqoop-env.sh
export HADOOP_COMMON_HOME=/opt/module/hadoop-2.7.2
export HADOOP_MAPRED_HOME=/opt/module/hadoop-2.7.2
export HIVE_HOME=/opt/module/hive
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10
export ZOOCFGDIR=/opt/module/zookeeper-3.4.10
export HBASE_HOME=/opt/module/hbase
3.3 拷贝 JDBC 驱动
拷贝 jdbc 驱动到 sqoop 的 lib 目录下,如:
$ cp mysql-connector-java-5.1.27-bin.jar
/opt/module/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/lib/
3.4 验证 Sqoop
我们可以通过某一个 command 来验证 sqoop 配置是否正确:
$ bin/sqoop help
出现一些 Warning 警告(警告信息已省略),并伴随着帮助命令的输出:
Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a table from a database to HDFS
import-all-tables Import tables from a database to HDFS
import-mainframe Import datasets from a mainframe server to HDFS
job Work with saved jobs
list-databases List available databases on a server
list-tables List available tables in a database
merge Merge results of incremental imports
metastore Run a standalone Sqoop metastore
version Display version information
3.5 测试 Sqoop 是否能够成功连接数据库
bin/sqoop list-databases --connect jdbc:mysql://bd004:3306/ --username root --password 123
出现如下输出:
information_schema
hive
logs_result
mysql
test
4. Sqoop的简单使用案例
4.1 导入数据
在 Sqoop 中,“导入”概念指:从非大数据集群(RDBMS)向大数据集群(HDFS,HIVE,
HBASE)中传输数据,叫做:导入,即使用 import 关键字
4.1.1 RDBMS 到 HDFS
- 确定 Mysql 服务开启正常
- 在 Mysql 中新建一张表并插入一些数据
$ mysql -uroot -p123
mysql> create database company;
mysql> create table company.staff(id int(4) primary key not null
auto_increment, name varchar(255), sex varchar(255));
mysql> insert into company.staff(name, sex) values('Thomas', 'Male');
mysql> insert into company.staff(name, sex) values('Catalina',
'FeMale');
- 导入数据
(1)全部导入
$ bin/sqoop import \--connect jdbc:mysql://bd004:3306/company \--username root \--password 000000 \--tabl