LeetCode_84.柱状图中最大的矩形

题目:

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

在这里插入图片描述

以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。

在这里插入图片描述

图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10 个单位。

示例:

输入: [2,1,5,6,2,3]
输出: 10

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/largest-rectangle-in-histogram
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解法一:穷举法:

所谓“穷举法”(暴力法),就是枚举一个问题的所有场景,从中选出最大、最小值。例如此题求最大矩形面积,因为矩形面积=高*底,所以穷举法就要固定其中之一,遍历另一个变量的值。固定底不太容易实现,所以采用固定高度,然后找到最大底边的方法。

时间复杂度: O(n^2)
空间复杂度: O(1)

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        int maxArea = 0;
        for(int i = 0; i < heights.size(); ++i) { //枚举高度,左右扩散确定底边
            int left = i, right = i;
            while(left >= 0 && heights[left] >= heights[i]) --left;
            while(right < heights.size() && heights[right] >= heights[i]) ++right;
            maxArea = max(maxArea, heights[i] * (right - left - 1));
        }
        return maxArea;
    }
};

方法二:单调递增栈:

方法三:单调递增栈 + 哨兵:

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页