6-12 Shortest Path [2](25 分)

6-12 Shortest Path [2](25 分)

Write a program to find the weighted shortest distances from any vertex to a given source vertex in a digraph. It is guaranteed that all the weights are positive.

Format of functions:

void ShortestDist( MGraph Graph, int dist[], Vertex S );

where MGraph is defined as the following:

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;
    int Ne;
    WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

The shortest distance from V to the source S is supposed to be stored in dist[V]. If V cannot be reached from S, store -1 instead.

Sample program of judge:

#include <stdio.h>
#include <stdlib.h>

typedef enum {false, true} bool;
#define INFINITY 1000000
#define MaxVertexNum 10  /* maximum number of vertices */
typedef int Vertex;      /* vertices are numbered from 0 to MaxVertexNum-1 */
typedef int WeightType;

typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;
    int Ne;
    WeightType G[MaxVertexNum][MaxVertexNum];
};
typedef PtrToGNode MGraph;

MGraph ReadG(); /* details omitted */

void ShortestDist( MGraph Graph, int dist[], Vertex S );

int main()
{
    int dist[MaxVertexNum];
    Vertex S, V;
    MGraph G = ReadG();

    scanf("%d", &S);
    ShortestDist( G, dist, S );

    for ( V=0; V<G->Nv; V++ )
        printf("%d ", dist[V]);

    return 0;
}

/* Your function will be put here */

Sample Input (for the graph shown in the figure):

7 9
0 1 1
0 5 1
0 6 1
5 3 1
2 1 2
2 6 3
6 4 4
4 5 5
6 5 12
2

Sample Output:

-1 2 0 13 7 12 



Dijkstra算法:
Vertex FindMin(int dist[], int Sure[],int N)
{
int i = 0, j = 0;
while (Sure[i] == 1 || dist[i]==INFINITY)
i++;
j = i+1;
while (j < N) {
if (dist[i] > dist[j] && Sure[j] != 1) {
i = j;
return i;
}
else
j++;
}
if (i >= N)
return -1;
else
return i;
}


void ShortestDist(MGraph Graph, int dist[], Vertex S)
{
Vertex V = S;
int* Sure = (int*)malloc(Graph->Nv * sizeof(int));
memset(Sure, 0, Graph->Nv * sizeof(int));
for (int i = 0; i < MaxVertexNum; i++)
dist[i] = INFINITY;
Sure[V] = 1;
dist[V] = 0;
while (V!=-1) {
for (Vertex i = 0; i < Graph->Nv; i++) {
if (Graph->G[V][i] != INFINITY && V!=i) {
if (dist[i]!=INFINITY) {
if (dist[i] > dist[V] + Graph->G[V][i])
dist[i] = dist[V] + Graph->G[V][i];
}
else
dist[i] = dist[V] + Graph->G[V][i];
}
}
V = FindMin(dist,Sure,Graph->Nv);
if (V!=-1) 
Sure[V] = 1;
}
for (Vertex i = 0; i <Graph->Nv ; i++)
if (dist[i] == INFINITY)
dist[i] = -1;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
All-Pairs Shortest Path问题是指在一个带权有向图中,求出任意两个节点之间的最短路径。解决这个问题的算法称为All-Pairs Shortest Path算法。 常用的All-Pairs Shortest Path算法有Floyd-Warshall算法和Johnson算法。 Floyd-Warshall算法的基本思想是动态规划。用dist[i][j]表示从节点i到节点j的最短路径长度,用k表示中间节点,则有状态转移方程: ``` dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]) ``` 其中,dist[i][j]的初始值为节点i到节点j的边权,如果i和j之间没有边,则为正无穷。算法的核心是对k从1到n的循环,依次更新dist[i][j]的值,最终得到所有节点之间的最短路径长度。 Floyd-Warshall算法的时间复杂度为O(n^3),其中n为节点数,主要时间花费在三层循环上,实际应用中可以通过空间换时间的方式优化算法。 Johnson算法的基本思想是通过引入一个虚拟节点,并将其与所有节点之间的边权设为0,将问题转化为带权有向图中的单源最短路径问题。然后使用Bellman-Ford算法求出虚拟节点到其它所有节点的最短路径长度,再用求最短路径时的松弛操作更新所有边的边权,将问题转化为带权有向图中的多源最短路径问题。最后使用Dijkstra算法求出所有节点之间的最短路径长度。 Johnson算法的时间复杂度为O(n^2logn+m),其中n为节点数,m为边数,主要时间花费在Bellman-Ford算法和Dijkstra算法上,实际应用中可以通过优化数据结构等方式优化算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值