tensorflow图像分类实战解析(下)

本文详细解析了TensorFlow中图像分类的实践操作,包括设置优化目标、定义批大小、理解feed_dict的工作原理、评价参数训练效果的函数以及使用Session和InteractiveSession进行模型训练。还探讨了如何从内存中读取图像列表并进行序列化处理,以及图像的ground-truth。文章最后展示了训练过程和结果的保存方式。
摘要由CSDN通过智能技术生成
  global_step = tf.Variable(0, name='global_step', trainable=False)
  train_op = optimizer.minimize(loss, global_step=global_step)
  return train_op

设定最小化目标以及最大步长

def evaluation(logits, labels):
  correct = tf.nn.in_top_k(logits, labels, 1)
  return tf.reduce_sum(tf.cast(correct, tf.int32))

衡量标签得到的数值和ground-truth之间的关系

def placeholder_inputs(batch_size):
  images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,IMAGE_PIXELS))

这里的batchsize定义了placeholder一次性读入图片的数目,所以理论上应该是有能力不需要将所有图片全部读入内存中再进行处理的。这个我还得继续研究

  labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
  return images_placeholder, labels_placeholder



def fill_feed_dict(images_feed,labels_feed, images_pl, labels_pl):
  feed_dict = {
      images_pl: images_feed,
      labels_pl: labels_feed,
  }
  return feed_dict

很重要的feed-dict 用来灌数据,其实就是在建立一个字典

def do_eval(sess,
            eval_correct,
            images_placeholder,
            labels_placeholder,
            data_set):
  # And run one epoch of eval.

评价现在参数训练效果的函数

  true_count = 0  # Counts the number of correct predictions.
  steps_per_epoch = 4 // FLAGS.batch_size
  num_examples &#
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值