最近一直在看文本挖掘这块儿,看了许多机器学习相关的资料,在这里做个笔记分享给大家,有供自己日后学习浏览。码字不易,喜欢请点赞!!!
这篇推文主要介绍Python实现SVM的案例,后期会更新加强版。
这里主要讲的是使用Python的Sklearn包实现SVM样本分类,而不包括SVM的理论推导,我在看SVM的理论的时候看了很多网上的博客,有很多都写的不错,这里推荐,July写的支持向量机通俗导论(理解SVM的三层境界),而且作者将其制作成了pdf版本,可以下载下来观看。这篇博客是July12年开始写的,并且一直更新完善,所以到现在真的是通俗易懂。这里附上网址:https://blog.csdn.net/v_july_v/article/details/7624837
理论部分这篇博客真的够!!!
Sklearn是Python专门用于机器学习的包,安装方法网上有很多,这里也不介绍了,有问题可以随时进交流群询问。
这里就开始一步步讲解,在实践过程中的具体步骤。
一般来说机器学习的实践流程包括:导入数据->数据标准化->模型选择->模型的训练测试->保存模型
首先,导入数据这块,你如果使用自己的数据集的话,可以用numpy或者pandas导入。本文这里直接使用Sklearn自带的经典的iris鸢尾花数据集。