3D论文阅读之AlignNet-3D

AlignNet-3D是一种基于学习的3D点云配准方法,尤其适用于智能汽车的精确3D跟踪状态估计。与传统算法如ICP相比,它在计算效率和鲁棒性上有优势,能够在遮挡和截断的情况下有效工作。论文展示了在Synthetic Scenes和KITTI Tracklets数据集上的优秀实验结果。
摘要由CSDN通过智能技术生成

引言

       Align(register) point clouds 即对齐(配准)点云,意思是将一个点云匹配到另一个点云上面,主要用来将从一个物体的不同角度得到的局部点云拼接起来,由此得到一个完整的3D模型,对点云做Alignment或Registration从本意上来说并没有什么本质的区别,尤其是在阅读学术论文的时候。

      但是我在工作中所了解到的是Alignment是把几个3D相机固定起来,然后计算出这几台3D相机点云之间相对位置的转换矩阵,一般情况下以第一个相机的坐标系为基准,把其他相机的点云通过转换与平移移到相同的坐标系下,然后可以实时捕捉完整的3D点云。而Registration则指的是只用一台3D相机,连续从各个角度对一个物体进行扫描,然后把把得到的点云一帧一帧的拼接起来,由此而得到完整的3D模型。所以从这个角度来说,Alignment得到完整模型是实时的,是多个相机同一时间从多个角度得到的点云拼接起来,每一帧都是完整模型,Registration则是一台相机从不同时间不同角度的到点云拼接,完整3D模型不是实时的,需要通过离线处理得到。但其本质均是通过得到点云之间的转换矩阵来实现匹配。

常见的Alignment或Registration算法

       最常见的Alignment算法即ICP(Iterative Closest Point)及其各种变体,如其名字所示,此方法是通过先对点云进行初配准,然后迭代最近点使相对应的点距离最小而得到一个转换矩阵。以下对Point-to-point ICP和Point-to-plane ICP这两种ICP方法做简要介绍:

Point-to-point & Point-to-plane ICP

一般来说,此ICP算法会迭代两个步骤:

(1)找到目标点云P和源点云Q中相对应的点集K={(p,q)},定义p与q的目标函数E(T)和q到p的转换矩阵T,不同的ICP变体使用不同的目标函数E(T)。
(2)通过最小化目标函数E(T)来更新变换T。

 point-to-point ICP使用的目标函数如下所示

 E(\mathbf{T}) = \sum_{(\mathbf{p},\mathbf{q})\in\mathcal{K}}\|\mathbf{p} - \mathbf{T}\mathbf{q}\|^{2}.

而point-to-plane ICP使用了一个不同的目标函数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值