- 博客(4)
- 收藏
- 关注
原创 强化学习DQN算法流程
DQN(深度Q学习)、经验回放、固定Q目标迭代流程。DQN简介Deep Q Network(DQN):是将神经网略(neural network)和Q-learning结合,利用神经网络近似模拟函数Q(s,a),输入是问题的状态,输出是每个动作a对应的Q值,然后依据Q值大小选择对应状态执行的动作,以完成控制。DQN算法伪代码以下是深度强化学习:深度Q网络DQN的迭代流程、其中增加了经验回放、固定Q目标等处理技巧流程的关键点是:1、该流程是一个横向展开流程,从左向右是时间轴上的逐步迭代。2、
2021-10-06 15:17:38 6334
原创 低配置运行carla学习记录-低画质模式
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档@[TOC]低配置运行carla学习记录-低画质模式一、低画质模式官方文档地址画质设置carla提供了两种基本画质:(需要在命令行中用以下命令启动carla)Low-低画质模式CarlaUE4.exe -quality-level=Low #Windows./CarlaUE4.sh -quality-level=Low #LinuxEpic-全画质模式CarlaUE4.exe -quality-level=Epic
2021-08-09 10:03:59 5357
原创 PreScan交通流车流插件(ITM)- Intelligent Traffic Module Plugin与matlab(simlink)联合仿真使用实例
PreScan交通流车流插件(ITM)- Intelligent Traffic Module Plugin与matlab(simlink)联合仿真使用实例注:本实例为自己学习验证成果,仅供大家学习交流使用,转发需标明来自本博客1.仿真平台介绍:matlab2021aprescan 8.50自带(ITM)插件,需自行参考帮助文档学习使用2.仿真场景:300m双向直道六车道两种车型车流包括直行,换道行为(少)3.ITM插件设置(1)(2)(3)设置完毕**4.****联合仿真
2021-04-23 11:03:59 2003 14
原创 毫米波雷达使用仿真学习实例
毫米波雷达使用仿真学习m文件matlab代码如下clear;clc;%% 创建驾驶场景addpath(fullfile(matlabroot,'toolbox','shared','tracking','fusionlib'));rng default;initialDist=150;initialSpeed=50;brakeAccel=3;finalDist=1;[scenario,egoCar]=helperCreateSensorDemoScenario('FCW',initial
2021-03-04 19:10:39 3344 5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人