Windows下 Vim 的使用(一)

Windows下 Vim 的使用(一)

前言

实际上最近在刷知乎,看到了一个北大信科大佬的开源自学项目,这个系列博客也是基于MIT-Missing-Semester这门课所作的一些整理,当然如果大家感兴趣也可以移步https://missing.csail.mit.edu/2020/
观看课程视频来进行学习


vim是什么

vim是一款文字编辑器,他有不同的插入文本和操作文本的模式,且vim是可编程的,在使用vim的过程中我们可以尽量避免使用鼠标和箭头键,来减少移动,提升操作效率。
实际上vim的学习对于windows系统的开发者似乎不是必须掌握的,但是事实证明,vim的掌握确实会极大帮助我们提高代码的编写效率,我们也不需要耗费大量精力去适应一个新的IDE。


vim的安装

https://www.vim.org/download.php#pc
点入链接后,直接选择相应的安装包,一路next就可以啦~


使用Vim编辑器创建 greet.py文件

打开终端后,输入vim greet.py 后回车,若存在greet.py 文件直接打开现有的greet.py文件,若不存在,则创建后打开

进入vim后,编辑器左下方会显示当前文件的名称


普通模式和插入模式

在启动vim时,直接进入普通模式

普通模式

在vim的普通模式下,允许用户使用键盘快捷键进行导航、文件等操作,但是普通模式下无法进行正常输入

插入模式

在vim的插入模式下,用户可以对文件进行编辑操作,他允许用户像使用普通文本编辑器一样使用vim
在普通模式下:
按 i ,切换插入模式,从当前字符的上一个字符开始输入
按a,切换插入模式,从当前字符的下一个字符开始输入
按I, 切换插入模式,从改行的开始开始输入
按A,切换插入模式,从当前行的末尾进行输入
在输入模式下,我们在文本编辑器中输入一下代码

def greet(name):
	print('Hi',name)
	print(' - Python')

输入结束后,按esc退出输入模式
回到正常模式时,输入 :(冒号),在终端左下方会出现一个冒号–这告诉我们我们正处于命令模式,在命令模式下键入 w(小写),然后按 Enter键,文件将被保存

关闭vim

一旦用户准备好退出vim,需要进行一下操作

  • 进入命令模式(确保自己在普通模式,然后键入:(冒号))
  • 键入 q(小写),用于退出
  • 按Enter回车
    操作完成后,会自动返回到命令行
    如果用户为保存更改,vim会阻止用户退出
    使用 :q!可以不进行保存直接退出
    使用:wq可以一次完成保存并退出

至此,我们已经成功使用vim进行了对greet.py文件的创建,编辑、保存及退出了


因为该文章的记录主要是为了记录自己在学习vim的过程,所以其中一些关于python配置和终端的使用可能会直接忽略~~
(。ò ∀ ó。)

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值