题意:
某人从(0,0)走到(x,y),平面上分布了n个人,问中途经过的距离最近的人的最大距离是多少。
思路:
二分答案+并查集判断答案是否合法。
对二分得到的每一个半径,以n个人为中心画圆,如果两圆相交则放入一个集合,如果与四个边届相交也合并,如果左右,上下,左下,右上边界有任何在同一个集合中,答案不合法。
感受:
一个神奇的做法,虽然原来也有想到画圆,但是没找到判断答案合法的方法,想不到还能用并查集判断。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N=1e3+10,inf=0x3f3f3f3f;
int x,y,n;
double a[N],b[N];
int p[N];
void init(){
for(int i=0;i<n+4;i++) p[i]=i;
}
int find(int x){
if(p[x]!=x) return p[x]=find(p[x]);
return x;
}
bool check(double r){
for(int i=0;i<n;i++){
for(int j=0;j<n+4;j++){
if(i==j) continue;
if(j==n||j==n+1) a[j]=a[i];
if(j==n+2||j==n+3) b[j]=b[i];
double dis=sqrt((a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]));
if((j<n&&dis<2*r)||(j>=n&&dis<r)){
int pa=find(i),pb=find(j);
// cout<<i<<' '<<j<<' '<<pa<<' '<<pb<<endl;
p[pb]=pa;
}
}
}
for(int i=0;i<n+4;i++) p[i]=find(i);
if(p[n]==p[n+1]) return false;
if(p[n+2]==p[n+3]) return false;
if(p[n]==p[n+2]) return false;
if(p[n+1]==p[n+3]) return false;
return true;
}
int main(){
cin>>x>>y>>n;
for(int i=0;i<n;i++){
cin>>a[i]>>b[i];
}
b[n]=0;
b[n+1]=y;
a[n+2]=0;
a[n+3]=x;
double l=0,r=1000000;
while(l<r){
if(r-l<1e-6) break;
init();
double mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.6f",l);
return 0;
}