题目:输入一个整数数组,判断该数组是不是某二元查找树的后序遍历的结果。如果是返回true,否则返回false。
例如输入5、7、6、9、11、10、8,由于这一整数序列是如下树的后序遍历结果:
8
例如输入5、7、6、9、11、10、8,由于这一整数序列是如下树的后序遍历结果:
8
/ \
6 10
/ \ / \
5 7 9 11
因此返回true。
如果输入7、4、6、5,没有哪棵树的后序遍历的结果是这个序列,因此返回false。
这题其实很简单,我们知道二元查找树的中序遍历是有序的。给定后续遍历结果,排序后可得到终须遍历结果。有了中序遍历结果和后续遍历结果,我们就可以确定一颗二叉树。其实这题目更加简单,只需要我们判定就可以了,一个二叉查找树,左边的节点一定会小于右边的节点。而后续遍历的最后一个节点就应该是根结点,因此这题可以很容易地用递归的思想解决。
View Code
#include <iostream>
using namespace std;
bool IsSearchBinaryTree( int a[], int n)
{
if (n < 3)
{
return true;
}
if (n == 3)
{
if (a[ 0] < a[ 2] && a[ 1] > a[ 2])
return true;
else
return false;
}
int i;
for (i = 0; i < n- 1; i++)
{
if (a[i] < a[n- 1])
continue;
else
break;
}
return IsSearchBinaryTree(a, i) && IsSearchBinaryTree(a + i, n - i - 1);
}
int main()
{
int a[] = { 7, 6, 9, 11, 10, 8};
cout<<IsSearchBinaryTree(a, 7)<<endl;
system( " pause ");
return 0;
}
using namespace std;
bool IsSearchBinaryTree( int a[], int n)
{
if (n < 3)
{
return true;
}
if (n == 3)
{
if (a[ 0] < a[ 2] && a[ 1] > a[ 2])
return true;
else
return false;
}
int i;
for (i = 0; i < n- 1; i++)
{
if (a[i] < a[n- 1])
continue;
else
break;
}
return IsSearchBinaryTree(a, i) && IsSearchBinaryTree(a + i, n - i - 1);
}
int main()
{
int a[] = { 7, 6, 9, 11, 10, 8};
cout<<IsSearchBinaryTree(a, 7)<<endl;
system( " pause ");
return 0;
}
解法2:+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
分析:这是一道trilogy的笔试题,主要考查对二元查找树的理解。
在后续遍历得到的序列中,最后一个元素为树的根结点。从头开始扫描这个序列,比根结点小的元素都应该位于序列的左半部分;从第一个大于跟结点开始到跟结点前面的一个元素为止,所有元素都应该大于跟结点,因为这部分元素对应的是树的右子树。根据这样的划分,把序列划分为左右两部分,我们递归地确认序列的左、右两部分是不是都是二元查找树。
参考代码:
在后续遍历得到的序列中,最后一个元素为树的根结点。从头开始扫描这个序列,比根结点小的元素都应该位于序列的左半部分;从第一个大于跟结点开始到跟结点前面的一个元素为止,所有元素都应该大于跟结点,因为这部分元素对应的是树的右子树。根据这样的划分,把序列划分为左右两部分,我们递归地确认序列的左、右两部分是不是都是二元查找树。
参考代码:
- using namespace std;
- ///
- // Verify whether a squence of integers are the post order traversal
- // of a binary search tree (BST)
- // Input: squence - the squence of integers
- // length - the length of squence
- // Return: return ture if the squence is traversal result of a BST,
- // otherwise, return false
- ///
- bool verifySquenceOfBST(int squence[], int length)
- {
- if(squence == NULL || length <= 0)
- return false;
- // root of a BST is at the end of post order traversal squence
- int root = squence[length - 1];
- // the nodes in left sub-tree are less than the root
- int i = 0;
- for(; i < length - 1; ++ i)
- {
- if(squence > root)
- break;
- }
- // the nodes in the right sub-tree are greater than the root
- int j = i;
- for(; j < length - 1; ++ j)
- {
- if(squence[j] < root)
- return false;
- }
- // verify whether the left sub-tree is a BST
- bool left = true;
- if(i > 0)
- left = verifySquenceOfBST(squence, i);
- // verify whether the right sub-tree is a BST
- bool right = true;
- if(i < length - 1)
- right = verifySquenceOfBST(squence + i, length - i - 1);
- return (left && right);