《编程之美》读书笔记12: 3.8 求二叉树中节点的最大距离

问题:

如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数。写一个程序求一棵二叉树中相距最远的两个节点之间的距离。

 

实际上就是求树的直径。若采用“动态规划方法”思想,会将该问题分解成“具有最大距离两点间的路径是否经过根节点”两个子问题,然后再对这两个子问题求解判断。实际上,不必这么麻烦。距离最远的两点必然在以某个节点A为根的子树上,它们间的路径必然经过该子树的根节点A。因而,以任意一个节点B为根的子树,计算出经过该子树根节点B的最大距离,则所有最大距离的最大值就是所要求的二叉树的最大距离,即“树的直径”。而经过树的根节点的最大距离为:左子树的高度+右子树的高度+2(假设空节点的高度为-1),因而,原问题等同于“计算每个节点的左子树和右子树的高度和,取最大值”

struct  Node  {
  Node 
*left;
  Node 
*right;
  
int data;
}
;

static  int  tree_height(Node *  root,  int &  max_distance)
{
  
//每碰到一个子节点,高度自增1,可以设空节点高度为-1,
  
//避免计算高度时对空节点的判断。
  if (root == NULL) return -1;
  
int left_height = tree_height(root->left, max_distance) + 1;
  
int right_height = tree_height(root->right, max_distance) + 1;
  
int distance = left_height + right_height;
  
if (max_distance < distance) max_distance = distance;
  
return  left_height > right_height ? left_height : right_height;
}


int  tree_diameter(Node *  root)
{
  
int max_distance = 0;
  tree_height(root, max_distance);
  
return max_distance;
}


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值