问题:
如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数。写一个程序求一棵二叉树中相距最远的两个节点之间的距离。
实际上就是求树的直径。若采用“动态规划方法”思想,会将该问题分解成“具有最大距离两点间的路径是否经过根节点”两个子问题,然后再对这两个子问题求解判断。实际上,不必这么麻烦。距离最远的两点必然在以某个节点A为根的子树上,它们间的路径必然经过该子树的根节点A。因而,以任意一个节点B为根的子树,计算出经过该子树根节点B的最大距离,则所有最大距离的最大值就是所要求的二叉树的最大距离,即“树的直径”。而经过树的根节点的最大距离为:左子树的高度+右子树的高度+2(假设空节点的高度为-1),因而,原问题等同于“计算每个节点的左子树和右子树的高度和,取最大值”。
struct Node {Node *left;
Node *right;
int data;
} ;
static int tree_height(Node * root, int & max_distance)
{
//每碰到一个子节点,高度自增1,可以设空节点高度为-1,
//避免计算高度时对空节点的判断。
if (root == NULL) return -1;
int left_height = tree_height(root->left, max_distance) + 1;
int right_height = tree_height(root->right, max_distance) + 1;
int distance = left_height + right_height;
if (max_distance < distance) max_distance = distance;
return left_height > right_height ? left_height : right_height;
}
int tree_diameter(Node * root)
{
int max_distance = 0;
tree_height(root, max_distance);
return max_distance;
}