代码随想录 动态规划Ⅶ

完全背包基础

def test_CompletePack(weight, value, bagWeight):
    dp = [0] * (bagWeight + 1)
    for j in range(bagWeight + 1):  # 遍历背包容量
        for i in range(len(weight)):  # 遍历物品
            if j - weight[i] >= 0:
                dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
    return dp[bagWeight]

518. 零钱兑换 II

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。 

题目数据保证结果符合 32 位带符号整数。

思路:经典的完全背包问题,amount时背包容量。硬币为物品的体积和价值.因为是求排列,所以物品放在外面,背包容量放在里面。

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0 for _ in range(amount+1)]
        dp[0] = 1
        for coin in coins:
            for i in range(coin, amount+1):
                dp[i] += dp[i-coin]

        return dp[-1]

377. 组合总和 Ⅳ

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

思路:与上题一样是多重背包问题,因为是求组合,因此背包容量放在外层,物品放在内层

class Solution:

    def combinationSum4(self, nums: List[int], target: int) -> int:
        dp = [0] * (target + 1)  
        dp[0] = 1  

        for i in range(1, target + 1):  # 遍历背包容量
            for j in nums:  # 遍历物品列表
                if i >= j:  # 当背包容量大于等于当前物品重量时更新组合总数
                    dp[i] += dp[i - j]  

        return dp[-1]  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值