完全背包基础
def test_CompletePack(weight, value, bagWeight):
dp = [0] * (bagWeight + 1)
for j in range(bagWeight + 1): # 遍历背包容量
for i in range(len(weight)): # 遍历物品
if j - weight[i] >= 0:
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
return dp[bagWeight]
给你一个整数数组 coins
表示不同面额的硬币,另给一个整数 amount
表示总金额。
请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0
。
假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
思路:经典的完全背包问题,amount时背包容量。硬币为物品的体积和价值.因为是求排列,所以物品放在外面,背包容量放在里面。
class Solution:
def change(self, amount: int, coins: List[int]) -> int:
dp = [0 for _ in range(amount+1)]
dp[0] = 1
for coin in coins:
for i in range(coin, amount+1):
dp[i] += dp[i-coin]
return dp[-1]
给你一个由 不同 整数组成的数组 nums
,和一个目标整数 target
。请你从 nums
中找出并返回总和为 target
的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
思路:与上题一样是多重背包问题,因为是求组合,因此背包容量放在外层,物品放在内层
class Solution:
def combinationSum4(self, nums: List[int], target: int) -> int:
dp = [0] * (target + 1)
dp[0] = 1
for i in range(1, target + 1): # 遍历背包容量
for j in nums: # 遍历物品列表
if i >= j: # 当背包容量大于等于当前物品重量时更新组合总数
dp[i] += dp[i - j]
return dp[-1]