【王道】计算机组成原理第二章数据的表示与运算(二)

本笔记结合《2023王道计算机组成原理考研复习指导》食用🔥

王道考研计算机组成原理第二章数据的表示与运算

1、进位计数制

在这里插入图片描述

我们平常使用的都是十进制数,计算机能够识别的都是二进制数。

1.1、十进制计数法

宗旨:逢十进一
975.36 = 9 × 1 0 2 + 7 × 1 0 1 + 5 × 1 0 0 + 3 × 1 0 − 1 + 6 × 1 0 − 2 975.36 = 9×10^2+7×10^1+5×10^0+3×10^{-1}+6×10^{-2} 975.36=9×102+7×101+5×100+3×101+6×102

1.2、r进制计数法

基数:每个数码位所用到的不同符号的个数。例如十进制会用到 0、1、2、3…9总共10个符号,所以十进制的基数是10。则r进制的基数为r

进制基数
二进制0、1
八进制0、1、2、3、4、5、6、7
十进制0、1、2、3、4、5、6、7、8、9
十六进制0、1、2、3、4、5、6、7、8、9、A(10)、B(11)、C(12)、D(13)、E(14)、F(15)

1.2.1、任意进制转十进制

下面是不同进制转十进制的方式:
二进制 : 101.1 − > 1 × 2 2 + 0 × 2 1 + 1 × 2 0 + 1 × 2 − 1 = 5.5 八进制 : 5.4 − > 5 × 8 0 + 4 × 8 − 1 = 5.5 十进制 : 5.5 − > 5 × 1 0 0 + 5 × 1 0 − 1 = 5.5 十六进制 : 5.8 − > 5 × 1 6 0 + 8 × 1 6 − 1 = 5.5 二进制:101.1 \quad -> 1×2^2+0×2^1+1×2^0+1×2^{-1} = 5.5 \\ 八进制:5.4 \quad -> 5×8^0+4×8^{-1} = 5.5 \\ 十进制: 5.5 \quad -> 5×10^0+5×10^{-1} = 5.5 \\ 十六进制: 5.8 \quad -> 5×16^0+8×16^{-1} = 5.5 二进制:101.1>1×22+0×21+1×20+1×21=5.5八进制:5.4>5×80+4×81=5.5十进制:5.5>5×100+5×101=5.5十六进制:5.8>5×160+8×161=5.5
来看一下八进制相加:逢八进一 ,同理:十六进制相加:逢十六进一
八进制 : 5.4 + 0.4 = 6.0 八进制 : 5.4 + 1.4 = 7.0 十六进制 : 5.8 + 0.9 = 6.1 二进制 : 101.1 + 11.1 = 1001.0 八进制:5.4+0.4 = 6.0 \\ 八进制:5.4+1.4 = 7.0 \\ \\ 十六进制: 5.8+0.9 = 6.1 \\ 二进制: 101.1+11.1 = 1001.0 \\ 八进制:5.4+0.4=6.0八进制:5.4+1.4=7.0十六进制:5.8+0.9=6.1二进制:101.1+11.1=1001.0
二进制是最适合计算机计算和存储的一种方式:

  1. 可以使用两个稳定状态的物理器件表示0、1。例如高低电平、电荷正负来表示0和1。
  2. 二进制0、1正好对应逻辑值的假、真,可以很方便实现逻辑运算。
  3. 可很方便地使用逻辑门电路实现算术运算(数电)

来再做一些练习:
二进制 : 10010010.110 = > 十进制 : 1 × 2 7 + 1 × 2 4 + 1 × 2 1 + 1 × 2 − 1 + 1 × 2 − 2 = 146.75 二进制: 10010010.110 \quad=> 十进制: 1×2^7+1×2^4+1×2^1+1×2^{-1}+1×2^{-2} = 146.75 二进制:10010010.110=>十进制:1×27+1×24+1×21+1×21+1×22=146.75

2^01
2^12
2^24
2^38
2^416
2^532
2^664
2^7128
2^8256
2^9512
2^101024
2^112048
2^124096

八进制 : 251.5 = > 2 × 8 2 + 5 × 8 1 + 1 × 8 0 + 5 × 8 − 1 = 168.625 八进制:251.5 \quad => 2×8^2+5×8^1+1×8^0+5×8^{-1} = 168.625 \\ 八进制:251.5=>2×82+5×81+1×80+5×81=168.625

1.2.2、二进制<=>八进制

二进制 => 八进制

  • 3位一组,每组转换成对应的八进制符号。不足3位的补0即可

二进制 : 1111000010.01101 = > 八进制 : 1702.32 二进制: 1111000010.01101 \quad => 八进制:1702.32 二进制:1111000010.01101=>八进制:1702.32
在这里插入图片描述

001 = 1 × 2 0 = 1 111 = 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 7 000 = 0 010 = 1 × 2 1 = 2 也可以这么算 : 001 = 1 × 1 = 1 111 = 1 × 1 + 1 × 2 + 1 × 4 = 7 010 = 1 × 2 = 2 001 = 1×2^0 = 1 \\ 111 = 1×2^2+1×2^1+1×2^0 = 7 \\ 000 = 0 \\ 010 = 1×2^1 = 2 \\ \\ 也可以这么算: \\ 001 = 1×1 = 1 \\ 111 = 1×1+1×2+1×4 = 7 \\ 010 = 1×2 = 2 001=1×20=1111=1×22+1×21+1×20=7000=0010=1×21=2也可以这么算:001=1×1=1111=1×1+1×2+1×4=7010=1×2=2


八进制 => 二进制

  • 每位八进制对应3位二进制

八进制 : ( 251.5 ) 8 = > 二进制 : 010101001.101 2 = > 010 5 = > 101 1 = > 001 八进制: (251.5)_8 \quad => 二进制: 010 101 001.101 \\ 2 => 010 \\ 5 => 101 \\ 1 => 001 \\ 八进制:(251.5)8=>二进制:010101001.1012=>0105=>1011=>001

1.2.3、二进制<=>十六进制

二进制=>十六进制

  • 4位一组,每组转换成对应的十六进制符号

二进制 : 001111000010.01101000 = > 十六进制 : 3 C 2.68 二进制: 001111000010.01101000 \quad => 十六进制:3C2.68 二进制:001111000010.01101000=>十六进制:3C2.68

在这里插入图片描述

0011 = 1 × 1 + 1 × 2 = 3 1100 = 1 × 8 + 1 × 4 = 12 = C 0011 = 1×1+1×2 = 3 \\ 1100 = 1×8+1×4 = 12 = C\\ 0011=1×1+1×2=31100=1×8+1×4=12=C


十六进制=>二进制

  • 每位十六进制对应4位二进制

( A E 86.1 ) 16 = > ( 1010111010000110.0001 ) 2 A ( 10 ) = > 1010 E ( 14 ) = > 1110 8 = > 1000 6 = > 0110 1 = > 0001 (AE86.1)_{16} => (1010 1110 1000 0110.0001)_2 \\ A(10) => 1010 \\ E(14) => 1110 \\ 8 => 1000 \\ 6 => 0110 \\ 1 => 0001 (AE86.1)16=>(1010111010000110.0001)2A(10)=>1010E(14)=>11108=>10006=>01101=>0001

1.2.4、各种进制的常见书写方式

进制书写方式
二进制(10010010.110)210010010.110B
八进制(1652)8
十六进制(1652)161652H0x1652
十进制(1652)101652D
  • 二进制 -> Binary
  • 十六进制 -> hexadecimal
  • 十进制 ——> decimalism

1.2.5、十进制->任意进制

1、整数部分除基取余法

如:将十进制 75.3 转化为二进制,我们要分整数部分 75 和小数不分 0.3 分别转换:

除基取余法:也成为除k取余法,主要用于把十进制的整数化为k进制的数。

在这里插入图片描述

利用短除法,除以k=2,将得到的余数由下向上排序,这样就把75转化成二进制了
( 75 ) 10 = ( 1001011 ) 2 = 1001011 B (75)_{10} = (1001011)_2 = 1001011B (75)10=(1001011)2=1001011B

例如将 − 19 D 的补码转换为原码 [ x ] 补 = 1 , 1101101 首先将尾数全部取反 : 1 , 0010010 在末位 + 1 : [ x ] 原 = 1 , 0010011 例如将 -19D 的补码转换为原码 [x]_补 = 1,1101101 \\ 首先将尾数全部取反:1,0010010 \\ 在末位+1:[x]_原=1,0010011 例如将19D的补码转换为原码[x]=1,1101101首先将尾数全部取反:1,0010010在末位+1:[x]=1,0010011

2、小数部分乘基取整法

我们将小数部分 0.3 转化为二进制:

乘基取整法:也称为乘k取整法,主要用于把十进制的小数化为k进制的数。小数乘基数k,第一次相乘结果的整数部分为目的数的最高位,将其小数部分再乘基数k依次记下整数部分,反复进行下去,直到小数部分为0。

在这里插入图片描述

0.3 D = 0.01001... B 0.3D = 0.01001...B 0.3D=0.01001...B

上图中虽然小数部分并不是0,但是由于取整后的小数部分又再次出现,这就说明0.3D不能用二进制精确的表示,所以我们只需要取到上图即可。

3、方法二拼凑法🔥

当然我们也可以使用拼凑法,我们提前在稿纸上写上每个二进制位对应的位权,然后使用拼凑的方式将十进制转发为二进制。

在这里插入图片描述

例如上图中的十进制整数部分为260,260 = 256+4,则在 28和 24处写上1,其余部分均写0,则整数部分转化完成,小数部分同理,0.75 = 0.5+0.25。
260.75 D = 100000100110 B 533.125 D = 1000010101.001 B 533 = 512 + 16 + 4 + 1 ( 0.125 ) 10 = ( 001 ) 2 260.75D = 100000100110B \\ 533.125D = 1000010101.001B \\ \\ 533 = 512+16+4+1\\ (0.125)_{10} = (001)_2 260.75D=100000100110B533.125D=1000010101.001B533=512+16+4+1(0.125)10=(001)2

这种方法就是速度较快,如果题目要让十进制转八进制,我们可以先将十进制转换为二进制,然后将二进制转换为八进制。如将上图中的十进制转换为八进制:

( 1000010101.001 ) 2 = ( 1025.1 ) 8 001 = 1 101 = 5 010 = 2 000 = 0 001 = 1 (1000010101.001)_2 = (1025.1)_8 \\ 001 = 1 \\ 101 = 5 \\ 010 = 2 \\ 000 = 0 \\ 001 = 1 (1000010101.001)2=(1025.1)8001=1101=5010=2000=0001=1
这种方法适用于给的十进制数不是特别大,使用这种方法速度会更快。

1.3、真值和机器数

  • 真值:符合人类习惯的数字

  • 机器数:数字实际存到机器里的形式,正负号需要被 “数字化”

例如我们的十进制数如果还带正负号要怎么办呢?通常的解决方法是我们会增加一个标志位(符号位),用一个二进制的0或1表示正或者负。
15 = 1111 8 = 1000 + 15 = 01111 − 8 = 11000 15 = 1111 \\ 8 = 1000 \\ \\ +15 = 01111 \\ -8 = 1 1000 15=11118=1000+15=011118=11000

2、字符和字符串

2.1、英文字符在计算机内的表示

2.1.1、ASCII码

英文在计算机里就是用ASCII码来表示的,因为计算机只能识别二进制数,所以我们制定了规则将数字、字母、符号共128个字符映射为二进制数,只需要7个二进制编码就可以达到要求。但是计算机处理数据的时候通常都是以一个字节B(也就是8bit)为单位,所以虽然理论上我们只需要7位二进制编码就已经可以表示128个字符,但是我们为了计算机方便,通常会在最高位补0,凑足一个字节B。

在这里插入图片描述

ASCII码中的32~126叫做可印刷字符,也就是我们平常可以在计算机屏幕上看到的字符,其余为控制、通信字符。

在这里插入图片描述

  • 48 -> 57 表示数字 0 -> 9,前四位比特都是0011,后面四位分别对应数字的二进制
  • 所有的大写字母的前三个比特都是 010,后面的五个比特转化为十进制刚好是 1->26
  • 所有的小写字母的前三个比特都是 010,后面的五个比特转化为十进制刚好是 1->26
  • 记住大写英文字母和小写英文字母是连续的,但是大写字母和小写字母是不连续的即可。

例如如下题:

在这里插入图片描述

由于每个字母的ASCII码都是8bit位,所以用0来补足。

在这里插入图片描述

2.2、中文字符在计算机内的表示

2.2.1、汉字的表示和编码

在这里插入图片描述

GB 2312-80:1980年推出的汉字+各种符号共 7445 个。因为是1980年,所以只囊括了常用的汉字和符号。这么多的汉字总共被分为94个区,每个区94个位置。通俗的讲就是94行×94列的矩阵,每个格子对应一个汉字,这样我们就可以用行号和列号来表示每个汉字的位置,也就是使用区位码来表示汉字位置。

这样会造成什么问题呢?在网络通信中,例如A主机发送B主机区位码(6,7),B主机收到第一个6按照ASCII码去查找去了,这样就会出事故。可是区位码范围是 0~93 ,而 ASCII 码 0~31表示的就是控制、通信字符。所以为了防止错乱,我们将发送的区位码加上32,这样区位码的范围就算是 32 ~ 125,这就得到了 国标码

但是要想把汉字存入计算机里面,还要给国标码加上 128,从而得到汉字机内码。之所以加128是因为国标码范围(32 ~ 125,32 ~125)和ASCII码的英文字符范围重合了(观察上述ASCII码图表),这样汉字机内码的范围就(>128,>128)都大于128了。

我们知道一个汉字使用2个字节B来表示,如果A给B通信,B收到一个字节B的范围大于128,则收到的肯定是汉字,计算机就自然会去读第二个字节B,将2B组合成一个汉字,若小于128,则收到的肯定是英文字符。

区位码 : ( 0 ∼ 93 , 0 ∼ 93 ) 国标码 : ( 32 ∼ 125 , 32 ∼ 125 ) 汉字机内码 : ( > 128 , > 128 ) 区位码: (0\sim93,0\sim93) \\ 国标码:(32\sim125,32\sim125) \\ 汉字机内码:(>128,>128) 区位码:(093,093)国标码:(32125,32125)汉字机内码:(>128,>128)

这只是汉字的其中一种编码方式,现在还有UTF-8等等编码方式。

2.2.2、输入编码和字形码

输入:汉字输入码:就是为了输入汉字的,比如拼音输入、五笔输入法,输入法软件会把拼音自动转换为汉字机内码。

输出:汉字字形码。汉字输出时需要用到汉字字形码,将汉字机内码转换为汉字字形码。

在这里插入图片描述

2.3、字符串的存储

2.3.1、英文字符串的存储

假设某个计算机按字节编址(也就是每个内存地址会对应1B的内容),假设从地址为2的单元开始存储字符串 abc 。很多语言中,会在字符串最后存储 \0作为字符串结尾标志。

在这里插入图片描述

2.3.2、中文字符串的存储

假设某个计算机按字节编址(也就是每个内存地址会对应1B的内容),假设从地址为2的单元开始存储字符串 abc啊 ,中文字符的汉字机内码是 :B0 A1H

在这里插入图片描述

每个汉字要使用两个字节B来存储,这里有两种存储模式:

  1. 大端模式:将汉字的最高有效字节存放在低地址单元
  2. 小端模式:将汉字的最高有效字节存放在高地址单元

2.4、知识小结

在这里插入图片描述

3、定点数的表示

  • 定点数:小数点的位置固定 => 996.007 常规计数
  • 浮点数:小数点的位置不固定 => 9.96007×102 科学计数法

在这里插入图片描述

3.1、无符号数

无符号数:整个机器字长的全部二进制位均为数值位,没有符号位,相当于数的绝对值

表示范围:

  • 8位二进制数可以表示 28种不同的状态:0000 0000 ~ 1111 1111

  • 这里记录一下二进制 1111 1111 对应的真值怎么计算

    1. 第一种方法就是最简单但麻烦的 1×27+0×26 +… = 156D
    2. 第二种方法,我们给 1111 1111 + 1 这样就得到了 28 ,所以 1111 1111对应的真值为 28-1
  • 推广:n位无符号数能表示的范围为:0 ~ 2n -1

我们通常只会谈论无符号的整数,而不会谈论无符号的小数。

// 例如 unsigned 只能用来修饰 int、long,而不能用来修饰 float、double
unsigned long a;

3.2、有符号数的定点表示

在这里插入图片描述

对于有符号数,我们就既需要考虑整数如何表示,也要考虑小数如何表示。

对于定点的方式表示整数,我们会规定小数点是固定的,隐含在最低位的后面。最高位的二进制位表示的是符号位,通常0表示的是正,1表示的是负。对于定点的方式表示小数,我们会规定最高位为符号位,小数点位置固定在符号位的后面。我们用来表示整数或者小数的数值部分称为尾数

:我们可以用 原码、反码、补码三种方式来表示定点整数和定点小数。还可用移码表示定点整数。若真值为x,则用[x]、[x]、[x]、[x]分别表示真值所对应的原码、反码、补码、移码

3.2.1、原码

原码:用尾数表示真值的绝对值。符号位0/1对应正负。

若机器字长为n+1位,则尾数占n位,因为要有1位占符号位。通常机器字长为8位,我们来看下如何使用原码来表示整数和小数。

在这里插入图片描述

首先看左边图片,使用原码来表示整数 19D:

  • 表示整数的第一位是符号位,0代表正,1代表负
  • 由于小数点固定在尾数后面,所以我们才知道尾数的位权的。
  • 真值19转换为二进制:19 = 16+2+1,其余各项用0补齐即可
  • 用原码表示真值也可写为:[x] = 1,0010011 。图中的逗号是为了方便阅读,逗号前代表符号位,逗号后代表尾数(数值部分)。
  • 这里我们指明机器字长是8位,如果没有指明机器字长,我们就可以如图中那样写

之后再看右边图片,使用原码来表示小数 0.75D:

  • 由于小数点固定在符号位后面,所以我们就知道尾数的位权。
  • 真值 0.75 转换为二进制即可

3.2.2、原码的表示范围

1、用原码表示定点整数范围

若机器字长n+1位,其中尾数有n位,那么n位的尾数可以表示真值的绝对值的范围是 0 ~ 2n -1 ,我们再加上符号位表示正负的话,原码整数的表示范围:-(2n-1) ≤ x ≤ 2n-1 (关于原点对称)

注意:用原码表示定点整数,我们在表示真值 0 的时候有 +0 和 -0 两种形式,+0就是符号位为0,尾数全为0。-0就是符号位为1,尾数全为0。因此虽然 n+1 个二进制位可以表示 2n+1 种状态,理论上我们也可以表示 2n+1 个数。但实际上由于其中的两个二进制状态对应了同一个真值0,所以其实只表示了 2n+1-1 个数。

2、用原码表示定点小数范围

若机器字长n+1位,其中尾数有n位,这n个二进制位所能表示的真值绝对值的范围是: 0 ~ 1-2-n ,我们在加上符号位表示正负的话,原码小数的表示范围:-(1-2-n) ≤ x ≤ 1-2-n (关于原点对称)

解释:最小是0,所有位都是0,最大是1,所有位都是1。 2-1+2-2+2-3…+2-n = 1-2-n

注意:用原码表示定点小数,我们在表示真值 0 的时候也有 +0 和 -0 两种形式,

3.3.3、反码

反码:

  • 若符号位为0,则反码与原码相同(正数的反码 = 原码)
  • 若符号位为1,则数值位全部取反

在这里插入图片描述

要得到反码,先得到原码,根据符号位决定对原码是否需要修改。若符号位为0,则反码与原码相同,若符号位为1,则数值位全部取反。

3.3.4、补码

补码:

  • 正数的补码 = 原码
  • 负数的补码 = 反码末位+1(要考虑进位)

在这里插入图片描述

我们规定机器字长只有8位,所以向更高位进的1会被丢弃,所以补码的真值0只有一种表示形式。原码中会有两种二进制状态对应真值0,而在补码中只有其中一种状态表示0,那另一种状态呢?

  • 我们规定定点整数的补码 [x] = 1,0000000 如果符号位为1,而尾数都为0的话,我们规定这个补码所对应的真值为 x = -27
  • 由于+0和-0只有一种表示形式,因此多出来的二进制状态是 1.0000000,我们规定定点小数的补码 [x] = 1.0000000 表示真值 x= -1

对于8位的原码和反码来说,8位所能表示的最小数值是 -(27-1) ,但是对于补码来说它可以多表示一个负数,所以补码所能表示的最小数值是 -27

  • 因此如果机器字长是 n+1 位,那么补码整数的表示范围:-2n ≤ x ≤ 2n-1(比原码多表示一个 -2n)
  • 若机器字长为 n+1 位,补码小数的表示范围:-1 ≤ x ≤ 1-2n(比原码多表示一个 -1)

如果给你一个正数的补码,我们很容易就求出原码,因为正数的原码和补码是相同的。但是如果给你一个负数的补码,如何转换为原码呢?

  • 负数补码转换为原码:尾数取反,末位+1

例如将 − 19 D 的补码转换为原码 [ x ] 补 = 1 , 1101101 首先将尾数全部取反 : 1 , 0010010 在末位 + 1 : [ x ] 原 = 1 , 0010011 例如将 -19D 的补码转换为原码 [x]_补 = 1,1101101 \\ 首先将尾数全部取反:1,0010010 \\ 在末位+1:[x]_原=1,0010011 例如将19D的补码转换为原码[x]=1,1101101首先将尾数全部取反:1,0010010在末位+1:[x]=1,0010011

3.3.5、移码

移码:移码就是在补码的基础上将符号位取反注意:移码只能用于表示整数

移码就是靠补码转换过来的,并且移码和补码的+0和-0只有一种表示形式,所以若机器字长为n+1位,移码整数的表示范围:-2n ≤ x ≤ 2n-1(与补码相同)


移码的作用:

补码符号位取反就得到了移码,如果把移码的所有二进制位看作是无符号数,那么当真值增大的时候,移码所对应的无符号数也是在逐一递增的,所以移码表示的整数可以很方便对比大小。如果要对比两个移码的大小,我们可以让计算机硬件从最高位的比特依次向后对比,谁先出现1那么就谁更大,两个都同时出现1,那么继续向后比较即可。

3.3、用几种码表示定点整数

在这里插入图片描述

3.4、练习

将真值转化为各种码:

  1. 定点整数x=50,用8位的原码、反码、补码、移码表示

    • 50 = 32+16+2,所以50的二进制数表示为 110010 ,因为要凑足8位,并且50是正数,符号位是0,所以原码为 [x]= 00110010

    • 符号位为0,则反码与原码相同, [x]= 00110010

    • 正数的补码 = 原码,[x]= 00110010

    • 在补码的基础上将符号位取反。[x]= 10110010

  2. 定点整数 x=-100,用8位的原码、反码、补码、移码表示

    • 100 = 64+32+4,所以 100 的二进制数表示为 1100100,因为要凑足8位,并且100是正数,符号位是1,所以原码为 [x]= 11100100
    • 符号位为1,则数值位全部取反, [x]= 10011011
    • 负数的补码 = 反码末位+1,[x]= 10011100
    • 在补码的基础上将符号位取反。[x]= 00011100

将各种码转换成真值:

  1. 求下列各种码对应的真值:
    • [x] = 10001101
    • [x] = 10001101
    • [x] = 10001101
    • [x] = 10001101

将所有码转化为原码,首先看原码:

  1. 原码的符号位为1,则真值为负数,真值 x= -(1+4+8)=-13
  2. 将反码转换为原码,符号位为1,则数值位全部取反,[x] = 1110010 ,符号位为1,则真值为负数,真值x = (2+16+32+64) = -114
  3. 负数将补码转换成原码原码转换成补码的方式是一样的,都是把尾数取反,然后末位+1 。[x] = 11110011,符号位为1,则真值为负数,真值x = -115
  4. 将移码转换为补码,再将补码转换为原码。[x] = 00001101,[x] = 00001101 = +13

负数将补码转换成原码和原码转换成补码的方式相同,正数的补码 = 原码

  1. 求下列各种码对应的真值:
    • [x] = 00001101
    • [x] = 00001101
    • [x] = 00001101
    • [x] = 00001101

由于符号位为0,所以原码、反码、补码都是同一个真值, x = 13。将最后一个移码转换为补码 [x] = 10001101,再将补码转换为原码 [x] = 10001111,则真值x = -115

技巧:由[x]快速求[-x]的方法:符号位、数值位全部取反,末位+1

3.5、总结

在这里插入图片描述

3.6、各种码的作用

  • 补码的作用:使用补码可以将减法操作转变为等价的加法,这样ALU中无需集成减法器,执行加法操作时,符号位一起参与运算。
  • 移码的作用:移码表示的整数可以很方便对比大小

4、定点数的运算

4.1、移位运算

在这里插入图片描述

4.1.1、算数移位

算数移位:通过改变各个数码位和小数点的相对位置,从而改变各数码位的位权。可以用移位运算实现乘法、除法。

1、原码的算数移位

原码的算数移位:符号位保持不变,仅对数值位进行移位。例如对 -20D 进行算数移位

在这里插入图片描述

算数右移:高位补0,低位舍弃。若舍弃的位=0,则相当于÷2,若舍弃的位≠0,则会丢失精度。

说白话就是因为机器字长是8bit,超出的部分会丢弃,例如上图我们右移后,小数点后面的会直接舍弃,前面不够的高位就补0。

在这里插入图片描述

算数左移:只让数值位移动,符号位保持不变。低位补0,高位舍弃。若舍弃的位=0,则相当于×2,若舍弃的位≠0,则会出现严重误差。

上述是针对用原码表示的定点整数,用原码表示的定点小数同理。

2、反码的算数移位

在这里插入图片描述

因为正数的反码和原码都是相同的,所以正数的反码的算数移位和原码的算数移位相同。

但是负数的反码和原码是相反的,所以负数的反码算数移位和原码的算数移位相反。

  • 算数右移:高位补1,低位舍弃
  • 算数左移:低位补1,高位舍弃

这里为什么补1而不是0呢?因为反码中的0其实就是原码中的1,反码中的1就是原码中的0。所以反码中补1相当于在原码中补0

3、补码的算数移位

在这里插入图片描述

正数的补码和原码相同,因此正数的补码移位运算和原码相同

负数的补码 = 反码末位+1,导致反码最后边几个连续的1都因进位而变为0,直到进位碰到第一个0为止。规律:负数补码中,最右边的1及其右边同原码,最右边的1的左边同反码(如图)

  • 算数右移(同反码):高位补1,低位舍弃
  • 算数左移(同原码):低位补0,高位舍弃
4、总结

在这里插入图片描述

5、算数移位的应用

在这里插入图片描述

例如我们要让计算机计算 -20D × 7D,都是十进制,我们都先转化为二进制,如图整个乘法瞬间就演变为了算数移位操作,牛逼!

4.1.2、逻辑移位

在这里插入图片描述

逻辑右移:高位补0,低位舍弃

逻辑左移:高位舍弃,低位补0

可以把逻辑移位看作是对"无符号数"的算数移位

1、逻辑左移的应用

在这里插入图片描述

我们计算机会使用RGB来表示颜色,R、G、B分别用不同的十进制表示,显示颜色时我们需要将RGB连接起来可以这么做:

  1. 首先用3B存储无符号数102的二进制,并逻辑左移16位
  2. 之后用3B存储无符号数139,并逻辑左移8位
  3. 最后用3B存储无符号数139
  4. 三者相加得到3B的RGB值

牛逼!

4.1.3、循环移位

循环移位分为两种:简单循环移位和带 进位位的循环移位

1、简单循环移位

简单循环移位是我自己起的名字。无论左移还是右移,都会将移出的数补到缺位的位置。

在这里插入图片描述

2、带进位位的循环移位

进位位:当我们运算到最高位需要进位的时候,由于计算机机器字长的限制,进位的数值会被舍弃掉,进位位就是保存这些舍弃掉的数值,这样保证我们进行更高位的运算不会出错。进位位里面要么存一个1,要么存一个0

在这里插入图片描述

带进位位的循环左移:把原来最高位的数值放在CF进位位处,而进位位的数值则补到缺的位置(如上图)。

带进位位的循环右移:把原来最低位的数值放在CF进位位处,而进位位的数值则补到缺的位置

在这里插入图片描述

4.1.4、总结

在这里插入图片描述

4.2、加减运算

在这里插入图片描述

定点数的加减运算,我们通常只会探讨原码和补码的加减运算,因为反码一般不会直接参与这种运算的。

4.2.1、原码的加减部分

原码的加法运算:

  • 正数+正数 => 绝对值做加法,结果为正
  • 负数+负数 => 绝对值做加法,结果为负
  • 正数+负数 => 绝对值大的减绝对值小的,符号同绝对值大的数
  • 负数+正数 => 绝对值大的减绝对值小的,符号同绝对值大的数

简单解释:加数和被加数为正,我们只需要让二者的绝对值做加法操作,符号位依然为正。


原码的减法运算:减数符号取反,转变为加法

  • 正 - 负 -> 正 + 正
  • 负 - 正 -> 负 + 负
  • 正 - 正 -> 正 + 负
  • 负 + 正 -> 负 - 负

原码这法子对计算机来说复杂了,所以通常都是使用补码进行加减运算

4.2.2、补码的加减运算

对于补码来说,无论加法还是减法,最后都会转变成加法,由加法器实现运算,符号位也参与运算

  1. 设机器字长为8位(含1位符号位),A=15,B=-24,求[A+B] 和 [A-B]
原码反码补码
A=+1110,00011110,00011110,0001111
B=-110001,00110001,11001111,1101000

[ A + B ] 补 = [ A ] 补 + [ B ] 补 = 0 , 0001111 + 1 , 1101000 = 1 , 1110111 [A+B]_补 = [A]_补 + [B]_补 =0,0001111+1,1101000 = 1,1110111 [A+B]=[A]+[B]=0,0001111+1,1101000=1,1110111

验证:将补码 1,1110111 转变为原码是 1,0001001 ,对应的真值是 -9 ,正确。

负数的补码转换为原码有两种方式:

  1. 数值位取反 + 1
  2. 负数补码中,最右边的1及其右边同原码,最右边的1的左边同反码

这两种方法都可以,自己选择。
[ A − B ] 补 = [ A ] 补 + [ − B ] 补 = 0 , 0001111 + 0 , 0011000 = 0 , 0100111 [A-B]_补 = [A]_补 + [-B]_补 =0,0001111+0,0011000 = 0,0100111 [AB]=[A]+[B]=0,0001111+0,0011000=0,0100111

技巧:由[x]快速求[-x]的方法:符号位、数值位全部取反,末位+1

  1. 设机器字长为8位(含1位符号位),A=15,B=-24,C = 124,求[A+C] 和 [B-C]
原码反码补码
A=+1110,00011110,00011110,0001111
B=-110001,00110001,11001111,1101000
C=+11111000,11111000,11111000,1111100

[ A + C ] 补 = 0 , 0001111 + 0 , 1111100 = 1 , 0001011 ( 真值 − 117 ) [ B − C ] 补 = 1 , 0011000 + 1 , 0000100 = 0 , 1101100 ( 真值 108 ) [A+C]_补 =0,0001111+0,1111100 = 1,0001011 \quad (真值-117) \quad [B-C]_补 =1,0011000+1,0000100 = 0,1101100 \quad (真值108) \\ [A+C]=0,0001111+0,1111100=1,0001011(真值117)[BC]=1,0011000+1,0000100=0,1101100(真值108)

这里A+C的补码转化为原码对应的真值是-177,这与我们A+C=139明显不符合。这是因为发生了 溢出 的情况。

这是因为8位的补码能表示的范围只有 -128 ~ 127,139已经超出8位补码可以表示的范围。

4.2.3、溢出判断

我们只需要考虑补码的加法运算如何判断溢出即可。

在这里插入图片描述

例如两个正数相加,超过了127的范围,那么就会发生 上溢 。上溢得到的结果由符号位看起来是一个负数。

如果两个负数相加,超出了 -128 的范围,那么就会发生 下溢。下溢得到的结果由符号位看起来是一个正数。

在这里插入图片描述

基于上述规律,我们来进行溢出判断:

  1. 方法一:采用一位符号位

设A的符号为 AS,B的符号为BS,运算结果的符号为SS,则溢出逻辑表达式为:
V = A S B S S s ‾ + A S ‾ B S ‾ S S 若 V = 0 , 表示无溢出若 V = 1 , 表示有溢出 V = A_SB_S \overline {S_s}+ \overline {A_S} \overline {B_S} S_S \\ 若 V = 0,表示无溢出 若 V = 1,表示有溢出 V=ASBSSs+ASBSSSV=0,表示无溢出若V=1,表示有溢出
这上面的AS、BS 表示逻辑值的0和1,例如[A+C]运算中AS =0、BS = 0(通过看符号位),表示逻辑值的假,SS = 1,表示逻辑值的真。三个写在一起,表示执行 运算,也就是C语言里面的且运算。加号表示或运算。逻辑值上面画横线表示 运算。

这里解释下[A+C]运算中的溢出逻辑表达式:
A S = 0 、 B S = 0 、 S S = 1 、 S s ‾ = 0 、则 A S B S S s ‾ = 000 与运算 = 0 A s ‾ = 1 、 B s ‾ = 1 、 S s = 1 , 则 A S ‾ B S ‾ S S = 111 与运算 = 1 V = A S B S S s ‾ + A S ‾ B S ‾ S S = 0 和 1 执行或运算 = 1 则 V = 1 表示有溢出 A_S =0、B_S = 0、S_S=1、\overline {S_s} = 0、则A_SB_S\overline {S_s} = 000与运算=0 \\ \overline {A_s} = 1、\overline {B_s} = 1、S_s = 1,则\overline {A_S} \overline {B_S} S_S = 111与运算 = 1 \\ V = A_SB_S \overline {S_s}+ \overline {A_S} \overline {B_S} S_S = 0和1执行或运算 = 1 \\ 则V=1表示有溢出 AS=0BS=0SS=1Ss=0、则ASBSSs=000与运算=0As=1Bs=1Ss=1,ASBSSS=111与运算=1V=ASBSSs+ASBSSS=01执行或运算=1V=1表示有溢出

  • AS为1且BS为1且SS为0 => 表示负+负=正
  • AS为0且BS为0且SS为1 => 表示正+正=负
  • 很符合我们之前的溢出判断

逻辑既然这么简单为啥还特么要上述那些麻烦的计算,都是因为 与或非 在硬件里面好实现😔~~

  1. 方法二:采用一位符号位,根据数据位进位情况判断溢出
符号位的进位CS最高数值位的进位C1
上溢01
下溢10

总结:CS和C1不同的时候会发生溢出

符号位的进位:符号位向更高位产生的进位数

最高数值位的进位:尾数最高位向符号位产生的进位数

进位位符号位
00001111
01111100
010001011

例如上述计算,最高数值位的进位是C1=1,符号位的进位是CS=0

计算机处理不同的逻辑符号是 异或⊕,溢出逻辑判断表达式为 V=CS⊕C1 。若 V=0,表示无溢出,若V=1,表示有溢出。

解释一下异或逻辑:不同为1,相同为0

  • 0 ⊕ 0 = 0
  • 0 ⊕ 1 = 1
  • 1 ⊕ 0 = 1
  • 1 ⊕ 1 = 0
  1. 方法三:采用双符号位:正数符号为00,负数符号为11🔥

在这里插入图片描述

最终得到的结果中的两个符号位,第一个符号位表示应该得到的正负性,第二个符号位表示实际得到的正负性。所以本应得到正的0,实际确得到了负的1,则说明发生了上溢。

所以计算机要想判断是否溢出,只需要一个异或运算就搞定了。

4.2.4、符号位边角知识

  • 双符号位补码又称为模4补码,单符号位补码又称为模2补码

  • 如果把双符号位补码的逗号看作是小数点的话,那么小数点前的第一位权值为20,第二位权值为21,第三位权值是22=4,模4指的是把位值小于4的部分保留,大于4的部分舍弃

  • 双符号位在内存中存储并不会增加空间,因为实际存储时只存储1个符号位,只是运算的时候会复制一个符号位。

4.2.5、符号扩展

溢出了咋办,扩展吧!把int改为long,那么多出来的那些位怎么填补呢?

例如下图,将8位扩展为16位:

在这里插入图片描述

整数部分

  • 由于正整数的原码、反码、补码的表示都一样,所以在补位的时候补0凑足16位即可。在符号位和数值位之间补0
  • 负整数的原码在符号位和数值位之间补0
    • 负整数的反码和原码数值位相反,所以补的和原码相反,原码补0,反码补1
    • 补码和反码一样,都是补1
    • 因为补码原码反码之间有这样的规律,找到最右边的1,补码这个1的左边的数值部分和反码一致,1的右边数值部分和原码保持一致。

小数部分

  • 正小数的原码、反码、补码的表示都一样,所在在数值位后面补0
  • 负小数也用上面的规律,找到最右边的1,补码这个1的左边的数值部分和反码一致,1的右边数值部分和原码保持一致。

4.2.6、小结

在这里插入图片描述

4.3、乘法运算

在这里插入图片描述

4.3.1、原码的一位乘法

在这里插入图片描述

  1. 符号位单独处理:符号位 = xS⊕yS

  2. 数值位取绝对值进行乘法计算

在这里插入图片描述

ACC里面放乘积高位,MQ里面放乘数、乘积低位,X里面放被乘数。如下图:在开始计算之前将ACC置零,乘数在MQ里面,如果乘数的最低位=1,则让ACC加上被乘数;如果当前位=0,则ACC加上0。

在这里插入图片描述

如下图,相当于我们把第一个位积算出来了并放在ACC里面,接下来再算第二个位积的时候,由于第二个位积和第一个位积进行相加的时候需要有一个错位,所以计算机会让ACC和MQ里面的数值统一进行逻辑右移,ACC的最低位会移到MQ的最高位,高位补0。

在这里插入图片描述

在这里插入图片描述

接下来计算次低位和被乘数的位积,同样利用MQ的最低位进行位积的运算,此时最低位=1,所以ACC加上被乘数。

在这里插入图片描述

之后继续逻辑右移,高位补0。ACC和MQ中的红色部分可以称为部分积

在这里插入图片描述

此时MQ最低位为0,则ACC加0然后继续右移。

在这里插入图片描述

此时MQ最低位为1,所以ACC加上被乘数。然后继续右移:

在这里插入图片描述

此时MQ最低位为0,但是由于这个0是乘数的符号位,所以不参与运算。数值位有n位,我们只需要重复n次加法和移位就可以得到最终的结果,定点小数的符号位隐含在符号位后面,结果如下图:0.10001111

在这里插入图片描述

最后一步对符号位进行异或操作来修改符号位,这样我们再来看乘积高位,乘积低位就很好理解了,因为每次参与运算的只有被乘数的一个位,所以叫做 原码一位乘法

在这里插入图片描述

额的娘嘞,上面那就是计算机咋个实行的,下面再看看做题时候如何手算模拟:

王道书上写的是双符号位,这是因为补码一位乘法就是采用双符号位,实际上原码中单/双符号位都可以算,但是补码一位乘法中必须采用双符号位,所以为了记忆方便,干脆统一写成双符号位。


来吧,如下图:乘数只有数值位会参与运算,所以手算时乘数只写数值位即可。被乘数存在通用寄存器|x|当中,乘数存放在MQ乘商寄存器里面,高位部分积用ACC来记录,刚开始初始化为0。图中的C4就是要参与运算的数值,当为1的时候,则让ACC加上被乘数|x|,每次加法运算得到一个结果之后,先进行逻辑右移,然后再进行加法。

在这里插入图片描述

4.3.2、补码的一位乘法(Booth算法)

在这里插入图片描述

辅助位和MQ的最低位值只能为0/1,所以辅助位-MQ的最低位=1/0/-1 三种情况

  • 当值为1的时候,使用 ACC + [x]
  • 当值为0的时候,使用 ACC+ 0
  • 当值为-1的时候,使用 ACC + [-x]

在这里插入图片描述

辅助位:辅助位其实就是将MQ多扩展了一位,初始时辅助位为0,每次右移都会使得MQ的最低位顶替原本的辅助位。MQ有n位数值位,1位符号位,1位辅助位,所以实际上MQ共有n+2位。

CPU里面寄存器的长度一般都是统一的,所以MQ扩展了一位,ACC、X寄存器所有的寄存器也都会统一用 n+2 位,因此采用双符号位补码运算

**原码的乘法中是向 X 和 MQ 里面存了乘数和被乘数的绝对值,而补码的乘法中是将完整的带符号位的补码存入。**被乘数采用双符号数的补码,而乘数采用单符号位的补码(因为MQ的最后一位存了辅助位),所以乘数就只能是单符号位的补码。由于 ACC 会加 [x]和[-x],所以会有辅助电路实现两者之间的转换,不用我们操心。

在这里插入图片描述

  1. 如上图,乘数符号位参与运算,所以乘数的补码写全部,在最后一位前划线,划线前面一位是MQ的最低位,划线后面一位是辅助位。
  2. 第一轮辅助位-MQ中最低位 = 0-1 = -1,所以给ACC+[-x]
  3. 经过加法之后得到加和的值,这个值存在ACC里面,之后ACC和MQ会统一进行算数右移
  4. 第二轮辅助位-MQ最低位 = 1-1= 0,所以给ACC+0
  5. 经过加法之后得到加和的值,这个值存在ACC里面,之后ACC和MQ会统一进行算数右移
  6. 第三轮辅助位-MQ最低位 = 1-0 = 1,所以给ACC+[x]
  7. 经过加法之后得到加和的值,这个值存在ACC里面,之后ACC和MQ会统一进行算数右移
  8. 第四轮辅助位-MQ最低位 = 1-0 = 1,所以给ACC+[x]
  9. 经过加法之后得到加和的值,这个值存在ACC里面,之后ACC和MQ会统一进行算数右移
  10. 总共有4个数值位,所以需要进行4轮的加法和算数右移,但是补码最后要多加一轮的加法,只有加法没有右移。
  11. 第五轮辅助位-MQ最低位 = 1-0 = 1,所以给ACC+[x]这里发现0其实就是乘数的原符号位,所以我们就明白了为什么说补码乘法中符号位参与运算了吧,参与的是加法运算罢了~
  12. 经过加法之后得到加和的值,再后拼接上MQ的前n个位,就得到了[x·y] = 11.01110001
  13. 双符号位相乘1×1=1,得到的是负值,所以最后的结果为 x·y = 0.01110001

4.4、除法运算

在这里插入图片描述

4.4.1、原码除法:恢复余数法

在这里插入图片描述

在这里插入图片描述

  • 原码的符号单独处理,使用异或进行运算。数值位取绝对值进行除法计算。(这是因为原码既有可能是正的也有可能是负的)
  • 如上题,x/y。先写出|x|、|y| 绝对值,再算除数绝对值的补码 [|y|] 、 [-|y|]
  • ACC里面存被除数、余数的值,通用寄存器里面存除数的值,MQ存储商。初始将MQ置为0
  • 手算时,会比较ACC里面的余数和通用寄存器里面的除数大小,余数大于除数,则商1;余数小于除数,则商0。计算机比较傻,会默认先商1,如果错了再改为0

在这里插入图片描述

带括号的目的其实表示的是 ACC 里面的值,个人习惯不带,但是发现不好表示,前面也有一些没带,后面有时间再补吧

商1其实就是让余数-除数,即 (ACC)- (除数) ,然后将得到的值放回ACC中。余数-除数 = (ACC) + [-|y|] -> ACC,相减的结果是个负数,说明应该商0,计算机就会改0。但是ACC里面的值已经减了一个除数,所以为了恢复原样,我们又要加上除数。(ACC)+(除数) -> ACC 。之后进行逻辑左移,ACC高位丢弃,低位补0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

**之后继续,先默认商1,(ACC)+[-|y|] ->ACC,值为正商1正确,值为负商1错误改为商0,然后逻辑左移。**由于机器字长只有5位,所以商也只能求5位。

在这里插入图片描述

在这里插入图片描述

上面算的是定点小数的计算,所以符号位隐藏在符号位后面,商的值是0.1101和我们的手算结果相同,余数的值需要乘 2-n 。最后还要对符号位进行异或操作,修改商的符号位即可

1、手算原码除法

在这里插入图片描述

  1. 首先写出被除数和除数绝对值的原码表示,并且写出原码绝对值的补码,原码绝对值取负的补码
  2. 使用被除数减去除数,也就是加上除数绝对值的负值的补码,得到一个余数,符号位为1,所以这一位的商商0。并且在这个余数的基础上再加上除数,恢复成原来样子。
  3. 之后将余数逻辑左移,低位补0
  4. 之后继续减去除数,也就是加上绝对值的负值的补码,得到一个余数,符号位为0,所以这一位的商商1。

余数为正,商取1。余数为负,商取0

右边的流程图中,我们可以将最开始的被除数看为老余数。数值位为n,逻辑左右只需要进行n次,但是上商我们需要n+1次,最后一位上商余数不左移。

4.4.2、原码除法:加减交替法(不恢复余数法)

如果不恢复余数法,我们将第一步得到的余数记为a,a是负值,所以商0,加上除数绝对值的补码(记为b),得到的结果自然就是a+b,之后进行逻辑左移,实际上就是(a+b)×2 = 2a+2b。

第二步继续加上除数绝对值的负值的补码,也就是 2a+2b-b = 2a+b。

总结:如果余数为负,则可直接商0,并让余数左移1位再加上除数绝对值的补码

在这里插入图片描述


在这里插入图片描述

文字可能略绕,结合图片理解:

  1. 如上图,开始被除数是0.1011,ACC中存放01011,MQ初始化为0
  2. 第一步使用被除数加上除数绝对值的负值的补码,得到一个余数是负值,则商0
  3. 我们这个时候不用恢复余数,而是直接让得到的余数逻辑左移,逻辑左移之后再加上除数绝对值的补码,再得到一个余数。
  4. 由于这个余数是正的,所以商1。
  5. 之后继续逻辑左移,左移得到的余数再按照恢复余数法那样加上除数绝对值的负值的补码,得到一个余数。
  6. 最终的符号位依然需要进行异或操作

在这里插入图片描述

上述是原码加减交替法的流程。加减交替法需要加减n+1次,左移n次。如果最后一步得到的余数是负值,则需商0并且需要再进行一次加法得到正确的余数。所以加减交替法中加减的次数可能是n+1次,也可能是n+2次,但逻辑左移只需要n次


🔥总结:

  • 在原码的加减交替法中,若余数为负,则直接商0,让余数左移一位再加上除数的绝对值的补码,得到下一个余数
  • 若余数为正,则商1,让余数左移一位再减去除数的绝对值的补码,得到下一个余数

恢复余数法和加减交替法:

  • 恢复余数法:当余数为负时商0并加上除数的绝对值的补码,再左移,再加上除数绝对值的负值的补码
  • 加减交替法:当余数为负时商0并左移,再加上除数的绝对值的补码

4.4.2、补码除法运算

在这里插入图片描述

  1. 写出补码,注意写的并不是绝对值的补码

  2. 根据被除数和除数同号还是异号来判断被除数和除数的运算

    • 若被除数和除数同号,则被除数减去除数
    • 若被除数和除数异号,则被除数加上除数
  3. 根据第二步得到的余数来判断商

    • 若余数和除数同号,则商1余数左移一位减去除数
    • 若余数和除数异号,则商0余数左移一位加上除数
    • 重复n次
  4. 最后一步得到的余数和除数不管同号还是异号,我们都恒让商的末位置为1

上述操作可以得到 [x/y] = 1.0101,余数是0.0111×2-4

4.4.3、除法运算总结

在这里插入图片描述

5、强制类型转换

我们来看看C语言中的定点整数是如何进行强制转换的,C语言中的定点整数是用 “补码” 存储的。例如 int、short、long,在C语言中都是以补码的形式存储的。

在这里插入图片描述

来看上图,short型占用2个字节,也就是16个bit,16个比特表示的补码对应的真值是 -4321,则补码x = 1110 1111 0001 1111 ,第二句代码将 short 型强制转换成无符号的短整型,然后赋值给y,所以y的补码和x的补码相同。只是由于y是一个无符号的短整型,所以计算机在解析y的真值的时候会按照无符号整数来进行解析,解析的真值是61215。

  • 无符号数和有符号数之前的转换规则为:不改变数据内容,改变解释方式
  • 长整数变短整数:高位截断,保留低位
  • 短整数变长整数:符号扩展

6、数据的存储和排列

6.1、大小端模式

在这里插入图片描述

如上图:用16进制把4个字节的数据描述出来,最左边的01我们称为最高有效字节MSB,最右边67我们称为最低有效字节LSB,将图中的16进制转换为10进制和二进制如图所示。

我们知道多字节数据在内存里一定是占连续的几个字节,我们可以分为两种存储多字节数据的方式:

  • 大端方式:把最高有效字节存到更低地址的部分,把最低有效字节存到更高地址的部分(高存低,低存高)
  • 小端方式:把最高有效字节存到更高地址的部分,把最低有效字节存到更低地址的部分(低存低,高存高)

大端模式便于人类阅读,小端模式便于机器处理,因为机器在处理多字节数据的时候,通常也是按照内存地址递增的次序来读取多字节数据的每一个字节。例如处理两个int相加,由于每次只能读取一个字节,所以最好的方式就是从最低位开始相加。

6.2、边界对齐

在这里插入图片描述

1个字节8bit,2个字节16bit = 一个半字。4个字节32bit = 一个字。当我们给出半字、字地址,如何将其转换为字节地址呢?答案:只需要将字地址逻辑左移两位。逻辑左移两位意味着×4。由于每次访/存只能读/写1个字,也就是图中的一行,不能跨行读取,这样有些计算机就会采取边界对齐的方式,也有些计算机会采取边界不对齐的方式。

举个例子:例如我们要存储一个结构体,这个结构体有3个char型,1个short型。

  • 如果采取边界对齐方式存储,3个char型占第一行的3个字节,最后只留下一个字节,所以short型会存入下一行的2个字节中,这样只需一次访存
  • 如果采取边界不对齐方式存储,3个char型占第一行的3个字节,最后一个字节存short型的前一半,之后第二个存short型的后一半,这样需要两次访存,然后将其拼接才会得到此short型数据。

边界对齐方式就是用空间换时间,虽然浪费了一些空间,但是访存更快。

7、浮点数的表示

在这里插入图片描述

定点数可表示的范围有限,我们不能无限制地增加数据的长度,如何在位数不变的情况下增加数据表示范围呢?这就是浮点数要解决的问题!

7.1、从科学计数法理解浮点数

在这里插入图片描述

科学计数法后面的10的多少次方,10这个数是不会变的,所以我们我们记录这个数据不记录10也是可以的。如上图,+11+3.026 前三位表示10的次方,后面5位表示尾数。

  • +11我们称为阶码,阶码由阶符和数值部分组成,阶码为正的话表示我们要将小数点后移,如果阶符为负表示我们要将小数点前移,阶码的数值部分表示小数点移动多少位
  • +3.026表示尾数,尾数的正负号表示数值的正负性,后面的数字称为尾数的数值部分,尾数越短,科学计数法表示的数值精度就越低

阶码反映数值大小,尾数反映数值精度

7.2、浮点数的表示

定点小数和定点整数的小数点是固定的,所以我们称为定点数,定的点就是小数点。而浮点数的小数点是会浮动的,也就是看我们的阶码到底是多少。

  • 阶码是常用补码或者移码表示的定点整数
  • 尾数是常用原码或者补码表示的定点小数

在这里插入图片描述

浮点数真值的确定:
N = r E × M 阶码的真值是 E , 尾数的真值是 M , r 表示几进制表示的阶码 , 二进制表示的阶码 r = 2 N = r^E ×M \quad 阶码的真值是E,尾数的真值是M,r表示几进制表示的阶码,二进制表示的阶码r=2 N=rE×M阶码的真值是E,尾数的真值是M,r表示几进制表示的阶码,二进制表示的阶码r=2
这里的r也可以取2i,例如i取2、4、8、16等等。阶码E反映浮点数的表示范围怎么理解呢?例如我们设定阶码的阶符为+,阶码的数值部分最多有2位,那么阶码的数值部分范围就是 +0 ~ +99,那么表示的数值范围就被限定了。

来看两道例题:

在这里插入图片描述

首先来看a的阶码,a的阶码尾数都是用补码表示,用冒号分割阶码与尾数,用逗号分割阶符与阶码的数值部分

  • a的阶码 0,01对应真值+1
  • a的尾数 1.1001对应真值 -0.0111 = -(2-2+2-3+2-4)
  • 根据浮点数真值公式a的真值 = 21 × (-0.0111) = -0.111
  • 如果我们用1B=8bit的存储空间来存储浮点数a的阶码和尾数是刚好可以存储下的

之后来看b的阶码

  • b的阶码 0.10对应真值+2
  • b的尾数0.01001对应真值+0.01001 = +(2-2+2-5)
  • 根据浮点数真值公式b的真值 = 22 × (+0.01001) = +1.001
  • 如果我们用1B=8bit的存储空间来存储浮点数b的阶码和尾数,最后一位1存不下,我们只能抛弃,这就意味着b的精度就降低了

7.3、浮点数尾数的规格化

在这里插入图片描述

科学计数法其实是必须要求尾数的最高位是有效值,不能是无效值0,因为会丧失精度,所以我们再回头来看b的尾数,我们可以让尾数算数左移一位,阶码减1,直到尾数最高位是有效值即可。通过算数左移把浮点数进行规则化我们也称为左规

如果我们运算后的科学计数法是 109 ×302.6,科学计数法会要求我们小数点必须在第一位有效值的后面,所以我们需要算数右移两位(也可以说小数点左移两位),让阶码+2,通过算数右移把浮点数进行规范化我们称为右规

在这里插入图片描述

来看上面的例题:a、b两个浮点数的阶码和尾数都是用补码的形式来表示的,a、b的阶码都是2,对应真值分别如上图,a+b则让二者真值相加,得到的最终结果为 22×01.0100,这样发生了溢出,此时双符号位的最高位表示正确的正负性,而第二位表示的是计算得到的正负性。

当遇到上面的问题时,我们就可以通过右规的方式来把浮点数规格化,也就是将b的尾数算数右移,让尾数整体右移一位,阶码+1。这样得到的就是一个规格化的尾数。

7.4、规格化浮点数的特点

尾数可以用原码和补码表示,尾数数值的最高位到底取多少才能算是有效值,这个原码和补码是有区别的。

在这里插入图片描述

  • 用原码表示尾数最高数值位是1即可
  • 用补码表示尾数的符号位和最高数值位(即符号位的后一位)一定相反

例如上面的题,阶码的补码对应的真值是+6,尾数的补码表示尾数是负数,则必须保证规格化的符号位和最高数值位一定相反。所以尾数算数左移三位,低位补0,阶码-3

规格化后的浮点数并不是无穷无尽的,也是有极限的,超出正数所能表示的范围,我们称为正上溢,超出负数所能表示的范围,我们称为负上溢

7.5、小结

在这里插入图片描述

8、IEEE754浮点数标准

艾吹破E754标准当中阶码是用移码表示的

在这里插入图片描述

移码的定义其实是这样的:我们写出真值的对应的二进制,然后加上一个偏置值。偏置值 = 2n-1

在这里插入图片描述

但有时候我们也会把偏置值设为不一样的值,例如IEEE754标准中,将偏置值设为 2n-1-1。

在这里插入图片描述

二进制减法中减数比被减数小,给减数加上2n,例如上述 -1000 0000+0111 1111 = -1000 0000 + 1111 1111 。

在IEEE754标准中,移码的全0和全1用无符号数规则解析,对应的是255。

8.1、IEEE754标准

在这里插入图片描述

IEEE754标准中尾数用原码表示,对于浮点数来说,如果尾数是用原码表示,我们希望它的第一个有效位是1,所以干脆默认在尾数数值位我们隐藏表示最高位1,这样就免去了必须要规格化的步骤,所以对于float短浮点数来说,虽然尾数数值只有23位,但事实上有24位,1被隐藏了

IEEE754标准中阶码用移码表示,移码的偏置值是 2n-1-1,8位阶码表示的移码,可以表示的范围是-128~+127,当偏置值为2n-1-1=127的时候,-128和-127这两个的移码表示表示全1和全0,在这个标准中全1和全0会被用作特殊用途,所以8位阶码的真值正常范围只能取到 -126 ~ 127。

上面那个表格各个浮点数的数符、阶码、尾数数值总共占多少位要记住

在这里插入图片描述

来看float短浮点数例子:

  • (-1)s 就是上面的红色字,表示正负

  • 1.M,M就是上面的绿色字,就是后面的23位尾数,二者进行拼接

  • 2E-127 ,E-127阶码的真值,就是移码-偏置值,E就是阶码

    • 移码的定义:移码 = 真值+偏置值,所以阶码的真值 = 移码-偏置值
    • 移码-偏置值我们可以转为无符号数十进制再相减,结果再转换为二进制无符号数,没有必要非得用两个二进制数相减,这样能简单些

例题:

在这里插入图片描述

单精度浮点数:1位数符、8位阶码、23位尾数数值

  1. 首先将十进制转换为二进制,由于尾数部分最高位必须为1,所以进行规格化
  2. 负数数符取1
  3. 尾数部分是 .100000…,因为高位已经隐含了一个1
  4. 阶码真值 = -1
  5. 单精度浮点型偏置量 = 127D
  6. 移码 = 阶码真值+偏置量 = -1 + 111 1111 = 0111 1110 (凑8位)
    • 这一步也可以 127-1 = 126D,将其转换为二进制无符号数
  7. 数符、移码、尾数拼接成32位

在这里插入图片描述

  1. 先将十六进制转换为二进制
  2. 第一位是数符1
  3. 接下来的8位是阶码
  4. 最后23位是尾数

在这里插入图片描述

在这里插入图片描述

9、浮点数的运算

9.1、加减运算

以十进制科学计数法为例:

在这里插入图片描述

步骤:

  1. 对阶:将阶数变成一样的,阶数更小的向阶数更大的对齐,所以将上图中1010转换为1012
  2. 尾数加减:对尾数进行相加和相减
  3. 规格化:如果尾数加减出现类似 0.0099517×1012时,需要左规(算数左移,阶码-1),如果尾数加减出现类似99.517107×1012时,需要右规(算数右移,阶码+1)。上图中尾数的第一个数值位是有效位9,所以不需要规格化
  4. 舍入:若规定只能保留6位有效尾数,则
    • 可以将超出6位的直接砍掉:9.9517107×1012 -> 9.95171×1012
    • 若砍掉部分并非全0,则进1:9.9517107×1012 -> 9.95172×1012
    • 也可以采取四舍五入,当舍弃位≥5时,高位进1
  5. 判断溢出:若规定阶码不能超过两位,则运算后阶码超出范围,则溢出
    • 9.85211×1099 + 9.96007×1099 = 19.81218×1099
    • 对结果规格化并用四舍五入的原则保留6位尾数,得 1.98122×10100 ,阶码超过两位,发生溢出(注意:尾数溢出未必导致整体溢出)

来看例题:

已知十进制数X=-5/256、Y=+59/1024,按机器补码浮点运算规则计算X-Y,结果用二进制表示,浮点数格式如下:阶符(阶码的符号位)取2位,阶码取3位,数符(数值的符号位)取2位,尾数取9位

  1. 将十进制真值转换为二进制数

    • X = (-101)×2-8 = -0.101×25 = -0.101×2-101 (尾数 = -0.101,阶码 = -101)
    • Y = +111011×2-10 = +0.111011 × 2-4 = +0.111011 × 2-100 (尾数 = +0.111011,阶码 = -100)
    • 再将X、Y的二进制尾数和阶码都转换为补码
    • 阶码 = -101,转换为补码 = 1011,由于阶符是2位,所以双符号位补码 = 11011。尾数 = -0.101,转换为补码 = 1.011,由于数符取2位,所以双符号补码 = 11.011。又由于尾数是9位,所以进行扩展,将尾数的双符号补码扩展 = 11.011000000
    • 则X:11011,11.011000000 ,Y = 11100,00.111011000
  2. 对阶:小阶向大阶看齐

    • 求阶差: 11011-11100 = 11011+00100 = 11111, 11111是补码,11是符号位,111是数值位,转换为原码 = 11,001,对应的真值 = -1,即X的阶码比Y的阶码小1
    • 对阶:将阶数更小的X的尾数右移一位,阶码+1。 X:11011,11.011000000 -> 11100,11.101100000 。 (相当于 X:-0.101×2-101 -> -0.101×2-100
  3. 尾数加减:

    • -Y的补码 = 11100,11.000101000
    • 尾数部分:X-Y = X+(-Y) = 10.110001000(发生溢出,需要规格化右规)
  4. 规格化:尾数右移,阶码+1(高位补多少看双符号位的更高位,更高位表示正确的符号,所以本题右移补1)

    • X-Y = X+(-Y) = 11100,10.110001000 -> 11101,11.011000100
    • 相当于X-Y = (-0.0101×2-100) - (+0.111011×2-100) = -1.001111×2-100 -> (-0.1001111)× 2-011
  5. 舍入:

    • 在算数右移时,我们已经抛弃了一个最低位0,而抛弃0之后并不影响精度,所以这里不需要考虑舍入
  6. 判断溢出:

    • 判断阶码是否越界,运算结果的阶码是 11101,两个符号位相同,则无溢出(或者题中已经说了阶码阶符位数,看超过没)
    • 则 X-Y的真值 = 11101,11.011000100 = 2-3 × (-0.1001111)

需要舍入的例子:

  • 0舍1入法:类似于十进制数运算中的“四舍五入”法,即在尾数右移时,被移去的最高数值位为0,则舍去;被移去的最高数值位为1,则在尾数的末位加1。这样做可能会使尾数又溢出,此时需再做一次右规
  • 恒置1法:尾数右移时,不论丢掉的最高数值位是“1”还是“0”,都使右移后的尾数末位恒置“1”。这种方法同样有使尾数变大和变小的两种可能。

9.2、强制类型转换

在这里插入图片描述

9.3、小结

在这里插入图片描述

  • 7
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生命是有光的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值