2021-02-28

数组中最大和的子数组

题目:

输入一个整型数组,数据元素有正数也有负数,求元素组合成连续子数组之和最大的子数组,要求时间复杂度为O(n)。

例如:

输入的数组为1, -2, 3, 10, -4, 7, 2, -5,最大和的连续子数组为3, 10, -4, 7, 2,其最大和为18。

背景:

本题最初为2005年浙江大学计算机系考研题的最后一道程序设计题,在2006年里包括google在内的很多知名公司都把本题当作面试题。

由于本题在网络中广为流传,本题也顺利成为2006年程序员面试题中经典中的经典。

分析:

如果不考虑时间复杂度,我们可以枚举出所有子数组并求出他们的和。不过非常遗憾的是,由于长度为n的数组有O(n2)个子数组(即:n + n-1 + ... + 1=n(n+1)/2);而且求一个长度为n的数组的和的时间复杂度为O(n)。因此这种思路的时间是O(n3)。

很容易理解,当我们加上一个正数时,和会增加;当我们加上一个负数时,和会减少。如果当前得到的和是个负数,那么这个和在接下来的累加中应该抛弃并重新清零,不然的话这个负数将会减少接下来的和。基于这样的思路,我们可以写出如下代码。


void MaxSum(int array[], unsigned int len)
{
    if(NULL == array || len <=0){
        return;
    }
 
    int curSum = 0, maxSum = 0;
    int i = 0;
    for(i=0; i<len; i++){
        curSum += array[i];        // 累加
 
        if(curSum < 0){            // 当前和小于0,重置为0
            curSum = 0;
        }
 
        if(curSum > maxSum){    // 当前和大于最大和,则重置最大和
            maxSum = curSum; 
        }
    }
 
    if(maxSum == 0){            // 最大和依然为0,说明数组中所有元素都为负值
        maxSum = array[0];
        for(i=1; i<len; i++){
            if(array[i] > maxSum){
                maxSum = array[i];
            }
        }
    }
 
    printf("maxSum: %d", maxSum);
}
测试数组:

int array[] = {1, -2, 3, 10, -4, 7, 2, -5};        // 3, 10, -4, 7, 2 = 18
运行结果:


代码改进:

有时,需要输出最大和的子数组及其开始、结束下标,代码如下:

void MaxSum(int array[], unsigned int len)
{
    if(NULL == array || len <=0){
        return;
    }
 
    int curSum = 0, maxSum = 0;
    int index_start = 0, index_end = 0;        // 初始化子数组最大和下标
    int i = 0;
    for(i=0; i<len; i++){
        curSum += array[i];        // 累加
 
        if(curSum < 0){            // 当前和小于0,重置为0
            curSum = 0;
            index_start = i+1;        // 调整子数组最大和的开始下标
        }
 
        if(curSum > maxSum){        // 当前和大于最大和,则重置最大和
            maxSum = curSum; 
            index_end = i;            // 调整子数组最大和的结束下标
        }
    }
 
    if(maxSum == 0){            // 最大和依然为0,说明数组中所有元素都为负值
        maxSum = array[0];
        index_start = index_end = 0;                // 初始化子数组最大和下标
        for(i=1; i<len; i++){
            if(array[i] > maxSum){
                maxSum = array[i];
                index_start = index_end = i;        // 调整子数组最大和下标
            }
        }
    }
 
    // 输出最大和的子数组及其开始、结束下标
    printf("index_start: %d\nindex_end: %d\n", index_start, index_end);
    for(i=index_start; i<=index_end; i++){
        printf("%d\t", array[i]);
    }
 
    printf("\n\nmaxSum: %d", maxSum);
}
测试数组:

int array[] = {1, -2, 3, 10, -4, 7, 2, -5};        // 3, 10, -4, 7, 2 = 18
运行结果:


源码

参考推荐:

子数组的最大和[算法] 

微软、Google等面试题
————————————————
版权声明:本文为CSDN博主「阳光岛主」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/ithomer/article/details/7096252

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值