10.9学习笔记

不定积分

1.定义

如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分

\int f(x) dx

表示 f(x) 的所有原函数,通常写成:

\int f(x) dx=F(x)+C

其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。

不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。

2.基本积分公式

1)常数积分

\int kdx = kx+C

2)幂函数积分

\int x^{n}dx =\frac{x^{n+1}}{n+1}+C(n \neq -1)

3)指数函数积分

\int a^{x} dx=\frac{a^{x}}{lna} + C(a>0,a \neq 1)

\int e^{x} dx = e^{x} + C

4)对数函数积分

\int \frac{1}{x}dx=ln\left | x \right | + C

5)三角函数积分

\int \sin xdx=-\cos x+C

\int \cos xdx=\sin x+C

6)反三角函数积分

\int \frac{1}{\sqrt{1-x^{2}}} dx =\arcsin x + C

\int \frac{1}{\sqrt{1+x^{2}}} dx =\arctan x + C

3.换元积分法

3.1 第一类换元积分法

  1. 选择合适的变量替换: 选择一个合适的变量替换 u=g(x),使得积分变得更简单。

  2. 求导数: 求 u 对 x 的导数\frac{du}{dx}=g'(x),并将其改写为du=g'(x)dx

  3. 替换积分变量: 将原积分中的 x 替换为 u,并将 dx 替换为\frac{du}{g'(x)}

  4. 求解新积分: 求解新的积分\int f(u)du

  5. 回代变量: 将 u 回代为 g(x),得到最终的不定积分结果。

3.2 第二类换元积分法

第二类换元积分法通常涉及三角函数替换或带根号形式的替换。

  1. 选择合适的变量替换: 选择一个合适的变量替换 x=g(t),使得积分变得更简单。

  2. 求导数: 求 x 对 t 的导数\frac{dx}{dt}=g'(t),并将其改写为dx=g'(t)dt

  3. 替换积分变量: 将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。

  4. 求解新积分: 求解新的积分\int f(g(x))g'(t)dt

  5. 回代变量: 将 t 回代为g^{-1}(x),得到最终的不定积分结果。

定积分

定积分是微积分中的一个重要概念,用于求解函数在某个区间上的累积效应或面积。

1.定义

定积分

\int_{a}^{b} f(x)dx

表示函数 f(x)在区间 [a,b]上的累积效应或面积。定积分的定义可以通过以下步骤来理解:

  1. 分割区间: 将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中

    \Delta x_{i} = x_{i}-x_{i-1},且x_0=a,x_n=b

  2. 取样本点: 在每个小区间\left [ x_{i-1},x_{i} \right ]内取一个样本点\xi _{i}

  3. 构造黎曼和: 构造黎曼和\sum_{i=1}^{n}=f(\xi _{i}))\Delta x_{i},表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。

  4. 取极限: 当分割的区间数 n 趋向于无穷大,且每个小区间的长度 Δxi趋向于零时,黎曼和的极限即为定积分:\int_{a}^{b} f(x)dx= \lim_{n \to \infty} \sum_{i=1}^{n}=f(\xi _{i}))\Delta x_{i}

2.几何意义

定积分

\int_{a}^{b} f(x)dx

的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:

  • 如果 f(x)≥0,则定积分表示曲线下方的面积。

  • 如果 f(x)≤0,则定积分表示曲线上方的面积的负值。

3.性质

定积分具有以下重要性质:

1)线性性质

\int_{a}^{b}\left [ cf(x)+dg(x) \right ]dx=c\int_{a}^{b}f(x)dx + d \int_{a}^{b}g(x)dx (其中 c 和 d 是常数)

2)区间可加性

\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx + \int_{c}^{b}f(x)dx\, \, \, \, \, (a\leqslant c \leqslant b)

3)积分上下限交换

\int_{a}^{b}f(x)dx=-\int_{b}^{a}f(x)dx

4)定积分中值定理

        如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b],使得:

\int_{a}^{b}f(x)dx=f(c)(b-a)

4.微积分基本公式

牛顿-莱布尼茨公式

\int_{a}^{b}f(x)dx=F(b)-F(a) \, \, \, \, \, \, \, (F'(x)=f(x))

5.定积分换元法

步骤

1)选择合适的变量替换

选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:

x=g^{-1}(t)=h(t)

2)求导数

对 x 的导数

dx=h'(t)dt

3)替换积分变量

将原积分中的 x 替换为 t,并将 dx 替换为

h'(t)dt

4)确定新的积分上下限

将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。

5)求解新积分

求解新的定积分

\int_{t_{1}}^{t_{2}}f(h(t)) h'(t)dt

多元函数

1.二元极限

定义

设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当

0< \sqrt{(x-a)^2+(y-b)^2}<\delta

时,总有:\left | f(x,y)-L \right | < \epsilon

则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:

\lim_{(x,y)\rightarrow (a,b)}f(x,y)=L

几何意义

当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。

如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。

2.偏导数

‌偏导数是‌多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。

这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。‌

定义

设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:

\lim_{\Delta x \to 0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}

存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:\frac{\partial f}{\partial x} | (x_0,y_0)f'_x(x_0,y_0)

类似地,如果极限:

\lim_{\Delta y \to 0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta x}

存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:\frac{\partial f}{\partial y} | (x_0,y_0)f'_y(x_0,y_0)

偏导数的计算方法‌

对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导。

3.全微分

定义

如果函数z=f(x, y)在点(x, y)处的全增量

\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)

可以表示为

\Delta z=A\Delta x+B\Delta y+o(\rho )

,其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。

可微的必要条件条件

若z=f(x,y)在(x,y)点处可微,则偏导数 f'_{x}(x,y) 和 f'_{y}(x,y) 存在,并且

dz=f'_{x}(x,y)\Delta x+f'_{y}(x,y)\Delta y=f'_{x}(x,y) dx+f'_{y}(x,y) dy

可微的充分条件

z=f(x,y)在(x,y)的某个邻域内有连续的偏导数 f'_{x}(x,y) 和 f'_{y}(x,y) 则在(x,y)处可微,

dz=f'_{x}(x,y)\Delta x+f'_{y}(x,y)\Delta y=f'_{x}(x,y) dx+f'_{y}(x,y) dy

4.梯度

梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。

定义

设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:

\bigtriangledown f(a)=(\frac{\partial f}{\partial x_{1}}(a),\frac{\partial f}{\partial x_{2}}(a),\frac{\partial f}{\partial x_{3}}(a),...,\frac{\partial f}{\partial x_{n}}(a))

其中 \frac{\partial f}{\partial x_{i}}(a) 是函数 f 在点 a 处对第 i 个自变量的偏导数。

性质

  1. 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。

  2. 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。

沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。

梯度下降

梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。

算法步骤

1)初始化:选择一个初始点 x_0

2)迭代更新:对于每次迭代 k,计算当前点的梯度\bigtriangledown f(x_k),并更新参数:

x_{k+1}=x_k-\eta\bigtriangledown f(x_k)

其中,η 是学习率(步长),控制每次更新的步幅。

3)终止条件:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:

  1. 梯度的模足够小:当梯度的模(或范数)\left \| \bigtriangledown f(x_k) \right \|小于某个阈值时,停止迭代。

    说明:

    梯度的范数表示梯度向量的大小,即梯度向量的长度。

    梯度的范数(模) ∥∇f(xk)∥是这个向量的欧几里得长度,定义为:

    \left \| \bigtriangledown f(x_k) \right \|=\sqrt{(\frac{\partial f}{\partial x_{1}}(a))^2+\frac{\partial f}{\partial x_{2}}(a))^2+...+\frac{\partial f}{\partial x_{n}}(a))^2}

  2. 达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。

  3. 函数值变化足够小:当函数值的变化 \left | f(x_{k+1})-f(x_k) \right | 小于某个阈值时,停止迭代。

学习率

学习率 η是一个重要的超参数,控制着每次更新的步幅。选择合适的学习率对于梯度下降算法的性能至关重要:

  • 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。

  • 学习率过小:可能导致算法收敛速度过慢。

5.二重积分

二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。

定义

设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:

\iint_{D}f(x,y)dA

其中 dA表示面积元素。

几何意义

如果 f(x,y)是非负函数,二重积分

\iint_{D}f(x,y)dA

表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。

二重积分的计算步骤-直角坐标系

在直角坐标系下,二重积分可以表示为两个定积分的乘积:

\iint_{D}f(x,y)dA=\int_{a}^{b} \int_{g(x)}^{h(x)}f(x,y)\, dy\, dx

其中 D 是由 x=a 到 x=b 以及 y=g(x)到 y=h(x) 围成的区域。

  1. 确定积分区域 D:首先,你需要确定积分区域 D的边界。这个区域可以是矩形、圆形、多边形等。

  2. 设置积分限:根据积分区域 D,设置积分的限。例如,对于直角坐标系中的矩形区域,积分限通常是a \leqslant x \leqslant bc \leqslant y \leqslant d

  3. 写出积分表达式:根据积分限写出二重积分的表达式:

    \int_{a}^{b} \int_{g(x)}^{h(x)}f(x,y)\, dy\, dx=\int_{a}^{b} \, dx\int_{g(x)}^{h(x)}f(x,y)\, dy

  4. 计算内层积分:先对 y 进行积分,得到关于 x 的表达式。

  5. 计算外层积分:再对 x 进行积分,得到最终的积分值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值