GCD Compression
题目大意:(文末有原题)
给出2*n个数,首先从中拿走两个,然后再从2n-2个数中拿出n-1对整数,两个整数相加进入新数组,并且保证新形成的数组的所有元素的最大公约数>1;
思路:
因为要使新数组的所有元素的最大公约数 > 1,那么我们不妨假设最大公约数为2,因为每个数不是偶数就是奇数,并且 奇数 + 奇数 = 偶数,偶数 + 偶数 = 偶数,所以就是构造奇数对和偶数对;
如果奇数的数量是偶数,就扔掉2个偶数(注意当偶数个数为0,只能扔掉两个奇数);
如果奇数的数量是奇数,就扔掉一个偶数,一个奇数(此时一定会有偶数)
代码:
#include <iostream> using namespace std; const int maxn = 2e4 + 10; int a[maxn], even[maxn], odd[maxn]; int main() { int t; cin >> t; while(t--) { int n, k = 0, l = 0; cin >> n; for(int i = 0; i < 2 * n; i++) { cin >> a[i]; if(a[i] % 2) odd[k++] = i + 1; //注意输出的是 下标+1 else even[l++] = i + 1; } if(k % 2){ //提前扔掉一个偶数,一个奇数,输出剩下的奇数对和偶数对; for(int i = 0; i < k - 1; i += 2) cout << odd[i] << " " << odd[i + 1] << endl; for(int i = 0; i < l - 1; i += 2) cout << even[i] << " " << even[i + 1] << endl; }else { //提前扔掉两个偶数或奇数,输出剩下的奇数对和偶数对; if(l == 0) { //注意判断偶数的个数; for(int i = 0; i < k - 2; i += 2) cout << odd[i] << " " << odd[i + 1] << endl; }else { for(int i = 0; i < k; i += 2) cout << odd[i] << " " << odd[i + 1] << endl; for(int i = 0; i < l - 2; i += 2) cout << even[i] << " " << even[i + 1] << endl; } } } return 0; }
原题:
题目:
Ashish has an array a of consisting of 2n positive integers. He wants to compress aa into an array b of size n−1. To do this, he first discards exactly 2 (any two) elements from a. He then performs the following operation until there are no elements left in a:
- Remove any two elements from a and append their sum to b.
The compressed array b has to have a special property. The greatest common divisor (gcdgcd) of all its elements should be greater than 1.
Recall that the gcdgcd of an array of positive integers is the biggest integer that is a divisor of all integers in the array.
It can be proven that it is always possible to compress array a into an array bb of size n−1 such that gcd(b1,b2...,bn−1)>1.
Help Ashish find a way to do so.
输入:
The first line contains a single integer t (1≤t≤10) — the number of test cases. The description of the test cases follows.
The first line of each test case contains a single integer nn (2≤n≤1000).
The second line of each test case contains 2n integers a1,a2,…,an (1≤ai≤1000) — the elements of the array a.
输出:
For each test case, output n−1 lines — the operations performed to compress the array a to the array b. The initial discard of the two elements is not an operation, you don't need to output anything about it.
The ii-th line should contain two integers, the indices (1 —based) of the two elements from the array a that are used in the i-th operation. All 2n−2 indices should be distinct integers from 1 to 2n.
You don't need to output two initially discarded elements from a.
If there are multiple answers, you can find any.
样例:
Input:
3
3
1 2 3 4 5 6
2
5 7 9 10
5
1 3 3 4 5 90 100 101 2 3Output:
3 6
4 5
3 4
1 9
2 3
4 5
6 10Note:
In the first test case, b={3+6,4+5}={9,9} and gcd(9,9)=9.
In the second test case, b={9+10}={19} and gcd(19)=19.
In the third test case, b={1+2,3+3,4+5,90+3}={3,6,9,93} and gcd(3,6,9,93)=3.