A. Maximum GCD
最小因子是 2 2 2 ,所以答案就是 n 2 \frac{n}{2} 2n 。
AC代码:
int n, m, k;
int main()
{
int T;
sd(T);
while (T--)
{
sd(n);
pd(n / 2);
}
return 0;
}
B. GCD Compression
没有要求最后得到的 G C D GCD GCD 是最大的,那么就让奇数+奇数,偶数+偶数,这样得到的 G C D GCD GCD 最小也是 2 2 2 。
AC代码:
const int N = 2e5 + 50;
int n, m, k;
int a[N];
vector<PII> ans;
int main()
{
int T;
sd(T);
while (T--)
{
sd(n);
vector<int> odd, even;
rep(i, 1, 2 * n)
{
sd(a[i]);
if (a[i] & 1)
odd.pb(i);
else
even.pb(i);
}
int leno = odd.size();
int lene = even.size();
ans.clear();
rep(i, 0, leno - 1)
{
if (i + 1 <= leno - 1)
ans.pb(PII(odd[i], odd[i + 1]));
i++;
}
rep(i, 0, lene - 1)
{
if (i + 1 <= lene - 1)
ans.pb(PII(even[i], even[i + 1]));
i++;
}
rep(i, 0, n - 2)
pdd(ans[i].fi, ans[i].se);
}
return 0;
}
C. Number Game
- n = 1 n=1 n=1 的话 F a s t e s t F i n g e r FastestFinger FastestFinger 赢
- n = 2 n=2 n=2 或者 n n n 是奇数的话 A s h i s h g u p Ashishgup Ashishgup 赢,因为 n = 2 n=2 n=2 先手 − 1 -1 −1 , n n n 是奇数,先手除自身,都是可以得得到 1 1 1 ,接下来下一个人就是必败态。
- 对于这种情况我们可以把这个数拆成一个奇数和一个偶数相乘,先手操作是肯定是先除去这个奇数得到一个偶数,因为操作 − 1 -1 −1 的话这个数就变成奇数了,下一个操作的人就是必胜态。如果这个奇数是 1 1 1 的话说明没有奇数因子就要被迫 − 1 -1 −1 ,先手必败。还有就是这个数只有 2 2 2 一个偶数因子和一个素数因子先手也是必败态原理同上。
AC代码:
const int N = 2e5 + 50;
int n, m, k;
int main()
{
int T;
sd(T);
while (T--)
{
sd(n);
bool flag;
if (n == 1)
flag = 0;
else if (n & 1 || n == 2)
flag = 1;
else
{
int cnt = 0;
while (n % 2 == 0)
n /= 2, cnt++;
if (n == 1 || (cnt == 1 && judge(n)))//判断n是不是素数
flag = 0;
else
flag = 1;
}
if (flag)
puts("Ashishgup");
else
puts("FastestFinger");
}
return 0;
}
D. Odd-Even Subsequence
二分答案 ,排序后,对于每次二分的答案判断选取 k k k 个数是是否可以满足选取的符合题意条件。
AC代码:
const int N = 5e5 + 50;
int a[N];
int n, k;
bool check(int x)
{
int pos = 0;
bool flag = true, flag2 = true;
rep(i, 1, k)
{
if (i & 1)
{
if (pos == n)
flag = false;//选不够
pos++;
}
else
{
if (pos == n)//选不够
flag = false;
pos++;
while (a[pos] > x && pos < n)//选取偶数位置
pos++;
if (a[pos] > x)
{
flag = false;
break;
}
}
}
pos = 0;
rep(i, 1, k)
{
if (i % 2 == 0)
{
if (pos == n)
flag2 = false;
pos++;
}
else
{
if (pos == n)
flag2 = false;
pos++;
while (a[pos] > x && pos < n)
pos++;
if (a[pos] > x)
{
flag2 = false;
break;
}
}
}
if (flag || flag2)
return true;
else
return false;
}
int main()
{
sdd(n, k);
vector<int> v;
rep(i, 1, n)
{
sd(a[i]);
v.pb(a[i]);
}
sort(all(v));
int l = 0, r = n - 1;
int ans = 0;
while (r >= l)
{
int mid = l + r >> 1;
if (check(v[mid]))
{
r = mid - 1;
ans = v[mid];
}
else
l = mid + 1;
}
pd(ans);
return 0;
}