字典序算法

最近,关注了一个公众号--程序员小灰,利用漫画的方式讲解一些东西,挺好玩。字典序算法的理解及代码实现,参考其文。

题目:给定一个正整数,实现一个方法求出离该整数最近的大于自身的“换位数”。换位数,即把一个整数各个数位的数字进行全排列,从而得到新的整数。

输入:12345,输出:12354.

分析:为了和原数接近,应该尽量保持高位不变,低位在最小的范围变换顺序,那么究竟要变换多少位,取决于当前整数的逆序区域,如图1,12354的逆序区域是最后两位,该两位已经是当前的最大组合,若想接近原数,又比原数更大,必须从倒数第3位开始改变,即从后面的逆序区域中找到刚刚大于3的数字,和3的位置进行互换,如图2,最后把后两位转变回顺序,保证在倒数第三位为4的情况下,35是最小的,如图3


总结起来即三步:

1.从后向前查看逆序区域,找到逆序区域的前一位,也就是数字置换的边界

2.把逆序区域的前一位和逆序区域中刚刚大于它的数字交换位置

3.把原来的逆序区域转为顺序

package test;

import java.util.Arrays;

public class NiXu {
	public static int [] findNearestNumber(int []numbers){
		int [] numbersCopy=Arrays.copyOf(numbers, numbers.length);
		int index=findTransferPoint(numbersCopy);
		if(index==0){
			return null;
		}
		exchangeHead(numbersCopy,index);
		reverse(numbersCopy,index);
		return numbersCopy;
	}
//	从后向前查看逆序区域,找到逆序区域的前一位,即数字置换的边界
	public static int findTransferPoint(int []numbers){
		for(int i=numbers.length-1;i>0;i--){
			if(numbers[i]>numbers[i-1]){
				return i;
			}
		}
		return 0;
	}
//	把逆序区域的前一位和逆序区域中刚刚大于它的数字交换位置
	public static int[] exchangeHead(int []numbers,int index){
		int head=numbers[index-1];
		for(int i=numbers.length-1;i>0;i--){
			if(head<numbers[i]){
				numbers[index-1]=numbers[i];
				numbers[i]=head;
				break;
			}
		}
		return numbers;
	}
//	把原来的逆序区域转为顺序
	public static int[] reverse(int []num,int index){
		for(int i=index,j=num.length-1;i<j;i++,j--){
			int temp=num[i];
			num[i]=num[j];
			num[j]=temp;
		}
		return num;
	}

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int [] numbers={1,2,3,4,5};
		int []a=findNearestNumber(numbers);
		for(int i:a){
			System.out.print(i);
		}
	}
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是C语言实现代码: ```c #include <stdio.h> // 计算n的阶乘 int factorial(int n) { int res = 1; for (int i = 1; i <= n; i++) { res *= i; } return res; } // 交换两个数 void swap(int *a, int *b) { int temp = *a; *a = *b; *b = temp; } // 字典全排列 void permutation(int n) { int p[n]; // 初始化为1,2,3,...,n for (int i = 0; i < n; i++) { p[i] = i + 1; } int count = 0; do { count++; printf("%d\t", count); for (int i = 0; i < n; i++) { printf("%d", p[i]); } printf("\n"); } while (next_permutation(p, n)); } // 下一个字典排列 int next_permutation(int *p, int n) { // 从后往前找到第一个相邻的逆对 int i = n - 2; while (i >= 0 && p[i] >= p[i + 1]) { i--; } // 如果找不到逆对,说明已经是最后一个排列,返回0 if (i < 0) { return 0; } // 从i的右侧找到最小的大于p[i]的数 int j = n - 1; while (j > i && p[j] <= p[i]) { j--; } // 交换p[i]和p[j] swap(&p[i], &p[j]); // 反转i右侧的元素 int k = i + 1, l = n - 1; while (k < l) { swap(&p[k], &p[l]); k++; l--; } return 1; } int main() { int n; printf("请输入一个整数n(1<=n<=9):"); scanf("%d", &n); int count = factorial(n); printf("%d!共有%d个全排列,输出如下:\n", n, count); permutation(n); return 0; } ``` 该程使用了字典全排列算法,先将1到n初始化为一个数组p,然后按照字典的顺依次输出全排列,直到输出了n!个全排列。在每次输出时,先输出当前排列的编号,然后再输出该排列的元素。在next_permutation函数中,实现了求下一个字典排列的算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值