剑指offer--39.二叉树的深度

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Autumn03/article/details/80344179

题目:输入一棵二叉树的根节点,求该二叉树的深度,已知从根结点到叶结点依次经过的结点(含根、叶)形成树的一条路径,最长路径的长度为树的深度

分析:可用递归,如果一棵树只有一个结点则它的深度为1,如果根结点只有左子树而没有右子树,则深度为左子树深度加1,如果根节点只有右子树而没有左子树,则深度为右子树深度加1,如果根节点既有左子树又有右子树,则深度为其最大值加1;或者用非递归,即层序遍历二叉树

import java.util.*;
public class wr39TreeDepth {
//	递归
	 public static int TreeDepth(TreeNode root){
		 if(root==null){
			 return 0;
		 }
		 int nleft=TreeDepth(root.left);
		 int nright=TreeDepth(root.right);
		 return (nleft>nright)?(nleft+1):(nright+1);
	 }
//	 非递归,层序遍历
//	 先将根节点放入队列中,然后每次都从队列中取出一个结点打印该结点的值
//	 若这个结点有子结点,则将它的子结点放入队列到尾,直到队列为空
	 public static int TreeDepth2(TreeNode root){
		 if(root==null){
			 return 0;
		 }
		 Queue<TreeNode> queue=new LinkedList<TreeNode>();
		 queue.add(root);
		 int depth=0;
		 while(!queue.isEmpty()){
			 int length=queue.size();
			 depth++;
			 for(int i=0;i<length;i++){//一次处理一层的数据
				 TreeNode temp=queue.poll();//获取并移除
				 if(temp.left!=null){
					 queue.add(temp.left);
				 }
				 if(temp.right!=null){
					 queue.add(temp.right);
				 }
			 }
		 }
		 return depth;
	 }

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		TreeNode node0=new TreeNode(1);
		TreeNode node1=new TreeNode(2);
		TreeNode node2=new TreeNode(3);
		TreeNode node3=new TreeNode(4);
		TreeNode node4=new TreeNode(5);
		TreeNode node5=new TreeNode(6);
		TreeNode node6=new TreeNode(7);
		node0.left=node1;
		node0.right=node2;
		node1.left=node3;
		node1.right=node4;
		node2.right=node5;
		node4.left=node6;
		System.out.println(TreeDepth(node0));
		System.out.println(TreeDepth2(node0));
	}

}

进一步题目:输入一棵二叉树根节点,判断该树是否为平衡二叉树,如果某二叉树中任意结点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树

public class wr39TreeBalanced {
//	遍历树的每个结点的时候,调用TreeDepth得到左右子树的深度,若每个结点的左右子树深度差不超过1则是平衡二叉树
//	缺点:每个结点会被重复遍历
	public static boolean isBalanced0(TreeNode root){
		if(root==null){
			return true;
		}
		int left=TreeDepth(root.left);
		int right=TreeDepth(root.right);
		int diff=left-right;
		if(diff>1 || diff<-1){
			return false;
		}
		return isBalanced0(root.left)&&isBalanced0(root.right);
	}
	public static int TreeDepth(TreeNode root){
		 if(root==null){
			 return 0;
		 }
		 int nleft=TreeDepth(root.left);
		 int nright=TreeDepth(root.right);
		 return (nleft>nright)?(nleft+1):(nright+1);
	 }
//	后续遍历每一个结点,在遍历到一个结点之前,就已经遍历了它的左右子树
//	只需在遍历每个结点的时候记录它的深度(某一结点的深度等于它到叶结点的路径的长度)
//	可以一边遍历一边判断每个结点是否是平衡的
	public static boolean isBalanced(TreeNode root,int depth){
		if(root==null){
			depth=0;
			return true;
		}
		int left=0;
		int right=0;
		if(isBalanced(root.left,left)&&isBalanced(root.right,right)){
			int diff=left-right;
			if(diff<=1 && diff>=-1){
				depth=(left>right)?left+1:right+1;
				return true;
			}
		}
		return false;
	}
	public static boolean isBalanced2(TreeNode root){
		int depth=0;
		return isBalanced(root,0);
	}

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		TreeNode node0=new TreeNode(1);
		TreeNode node1=new TreeNode(2);
		TreeNode node2=new TreeNode(3);
		TreeNode node3=new TreeNode(4);
		TreeNode node4=new TreeNode(5);
		TreeNode node5=new TreeNode(6);
		TreeNode node6=new TreeNode(7);
		node0.left=node1;
		node0.right=node2;
		node1.left=node3;
		node1.right=node4;
		node2.right=node5;
		node4.left=node6;
		System.out.println(isBalanced0(node0));
		System.out.println(isBalanced2(node0));
	}

}

 

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页