题意:给n枚硬币,初始全部反面向上,有k次机会挑选一枚硬币抛,求正面向上的最大数学期望。
思路:求的是最大数学期望,所以只有两种情况。
1.i<n时,挑选反面向上的硬币抛,朝上朝下的概率都为0.5;
2.i==n时,这时全部都是反面朝上,挑选一枚硬币抛,朝上朝下的概率都为0.5;
这样就可以得出dp方程;
dp[i][j]表示第i次抛,有j枚硬币朝上。
i<n时,dp[i+1][j] += dp[i][j]*0.5;
dp[i+1][j+1] += dp[i][j]*0.5;
i==n时,dp[i+1][j] += dp[i][j]*0.5;
dp[i+1][j-1] += dp[i][j]*0.5;
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
double dp[410][410];
int main()
{
int n,k;
cin >> n >> k;
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(int i = 0; i < k; i++)
{
for(int j = 0; j < n; j++)
{
dp[i+1][j] += dp[i][j]*0.5;
dp[i+1][j+1] += dp[i][j]*0.5;
}
dp[i+1][n] += dp[i][n]*0.5;
dp[i+1][n-1] += dp[i][n]*0.5;
}
double ans = 0;
for(int i = 1; i <= n; i++)
ans += i*dp[k][i];
printf("%f\n",ans);
return 0;
}